Firebird 2.1 Language Reference Update

Everything new in Firebird SQL since InterBase 6

Paul Vinkenoog et al.
4 Oct 2024, document version 1.2 — covers Firebird 2.1-2.1.4

Firebird 2.1 Language Reference Update

Everything new in Firebird SQL since InterBase 6

4 Oct 2024, document version 1.2 — covers Firebird 2.1-2.1.4
Paul Vinkenoog et al.

Table of Contents

O gL (0T 18 i1 o] o OO PP TPPPRP PP 1
S o= ot 1 1= 1 PP PPPEP T PPPRPPPPPPPP 1
VEISIONS COVENEAooiiiiiiieiitte ettt ettt e e et e e e et e e e st e e e st e e e e b e e e e e e sne e e e e annre e e e e nnnreeenanes 2
L U110] o PSP PUPRPPPPPPRPPRPRIN 2

2. Reserved WOords and KEYWOITSoooiiriiieiiiii ettt e e e e e e e e annneee s 3
Added SINCE INTEIBASE 6eeiieiiiie e e e s e e e s 3

NEWIY TESEIVEA WOITS ...ttt e e e e s e e s nneeas 3
INEW KEYWOITS ...ttt ettt et e e et e e e st e e e s e b e et e e e annn e e e e e nrneeenn 4
Dropped SINCE INTEIBASE 6veiiiiiiieie e e et e e s 5
NO TONGEN TESEIVEA ...ttt e e et e e e e e e e e abn e e e e annr e e e e annneeeeans 5
NO 10NGEN KEYWOITS ...ttt e e s e e e e e e e e es 6
POSSIDly reserved in fULUrE VEISIONSoiiiiiiiee ettt 6

3. Miscellaneous 1aNgUAJE ElEIMENLEScviiiiiiiiiie et e e e e s s e e e e nnneeens 7
== (SINGIE-TINE COMMIBNT) ...t e e e e s e e e e e e e eas 7
SNOMNBNG CBSES ... e e e e e e s e e e s e e e e nneeas 7
L7 oo 1 1 8

SIMPIE CASE .ottt e e ekt e e e e et e e e et e e e e e e e e e s 8
SEAMCNEA CASE ...ttt e e e et e e e et e e e e e e s 9

4. Data types a0 SUDLYPEScooiiiiiiieiiiiie ettt et e e et e e e e s e e e e e e e s e e e 10
BIGINT GBEA LY ...eeeeeeiittieeeet ettt ettt et ettt e e e e e e e e et e e e s et e e e e e e e annne e e e e annre e e e e nnes 10
BLOB T8LA TY[IE . eeeeteeittei e e ettt ettt ettt e e et e et e e ek e e e e e e e e et e e e e e e e e e e s 10

Text BLOB support in funCtions and OPEIaLOrSccuvreeeriirieeeiiieeeessireee e s e 10
VarioUS ENNANCEIMIENLSceiiiiiieeiiiie e e e et e e e st e e e e e e e e ane e e e e s asbe e e e s asn e e e e e annreeesannneeeans 11
NEW ChEIBCIEN SEESeeeeeiie ittt e e et e e e s e e e e e s e e e e e anrnneeen 11
Character set NONE handling Changedooooiiiiiiiiiiic e 12
INEW COHBEIONS ...ttt ettt e et e e et e e ek et e e e b e e e e e e e e e e nnn e e e e e annnee s 13
Unicode collations for all CharaCter SatSoooiiiiiiiiic e 14

5. DDL SEBLEMIENLScoiiieeeieeeee e e e e s et e e e e e s st e e e e e e s s s e e e e e e e e s s s s s r e e et e e e e e s e nn R r e r e e e e e e e s e e e e e eeas 15

(00 I N [0 TP RP PR 15
CREATE COLLATION .ititeiitetaiiteeesitee ettt ettt ettt e ettt e s ts e e b e e e abe e e s abe e e ssne e e smbe e e enneeesnbeeeanneeens 15
DROP COLLATION ..ttt iuttteauttte ettt ettt e st e asteaeasbe ettt e e asee e e be e e e be e e aase e e aabeeeasbe e e snneeennbeeeanneeenes 17

(000 1Y 1 Y 1 N PSP PR 17

DATABASE ...ttt ettt ettt ettt ekttt ettt h bt e e R b e ek e e e R e £ e E et e E et e e R b et e eR bt e e aRb e e e anb e e e nr e e abreennnes 18
CREATE DATABASE ..ottt ettt et e et e e ettt e e e s e e e e s et e e e e e e e e s anneneeeanes 18
ALTER DATABASE .. .eiiiitii ittt ettt ettt sttt ettt s et e e it e e e ebb e e ekt e e e an e e e nreeabeeeannneeas 19

(10 N 1 N T TP P R RUPR PP 21
CREATE DOMAIN ettt ettt ettt a ekt e e kbt e e s bt e e kbt e e kb e e e kb e e e be e e anbeeeenneeennneeas 21
ALTER DOMAIN .ottt aitte ettt ettt ettt ettt e aab e e e st e e aate e e ahb e e e ab e e e bb e e s bs e e aane e e anneeeanneeeanneeeas 21

EXCEPTION .ttt ettt ettt etttk ettt ettt e sttt oo st £ e a ke e ek b e £ ek bt e £ kb e e e kb e e £ ase e e e ket e e abe e e enbe e e anbeeeanneeeas 22
CREATE EXCEPTION ...tiiittieittieattte ettt et e sbe e sstee e st e e ssse e e aab e e e st e e e ass e e e bb e e aabseesnneeeenneeeanneas 22
CREATE OR ALTER EXCEPTION ...ciiitiiiiiiieatieeiteeeatee e sttt e sbe e sibe e e sssee e ssbeeessnessnnseesnnneeennneas 22
RECREATE EXCEPTION ..uttieiutiiaauteeeatteeesiteeatteeateeeateaeateaesmbeeeaabeeeanseeaasseeansneesanneesnnesannes 23

EXTERNAL FUNGCTION ...tiiiiiieitteeaieeeateeeaiteeeaiteeaaiseeabseeateeesbe e e asbe e e aabe e e aabe e e asbeeasseeenneesnnneeanneas 23
DECLARE EXTERNAL FUNCTION ...iiiuttieiuiiiaaitieaaiieeasieeeaieaesteeeasneeessseaessseessnseesssseesnnsessnneas 23
ALTER EXTERNAL FUNCTION ..eiittiiiititeaieeeaieeeaieeesieeesiteeesssee e ssseessiseessssesssseesnnneesnnneesnnnas 24

I I PP 24
DECLARE FILTER .uuttiiititeittieeettee ettt e ettt e e st e e s s e e e amt e e e amb e e e anbe e e bb e e e nneeanneesnneeeans 24

1] PRSP 25
CREATE INDEX ..utttiiuttie ettt ettt sttt ettt et ettt e ekt e ek e e ek e e e ass e e e bt e e eabe e e emb e e e nmne e e enneeennneas 25

Firebird 2.1 Language Ref. Update

Privileges: GRANT @N0 REVOKEuuiiiiiiiiiieiiiee e ettt e sttt et e e st e e s annee e e s anne e e e e e 27
REVOKE ADMIN OPTIONitiiiitiitaititeaitteeasiteeaieessteeesseessaneeessbeesssseesasseeasaseesssseesaseeesneeesnns 27
PROGCEDUREcuttieiuttea ittt attee ettt ettt e ettt e ettt e eate e e e st e ek et e e bb e e e ke e e e ke e e eabe e e eabe e e anb e e e anbe e e enbeeenbeeennes 28
CREATE PROCEDUREuttiiittieittteattteaiee ettt et e et e e st e e st e e sabe e e aabe e e asbe e e abbeeaneeeeneeeenneas 28
ALTER PROCEDUREuttiiittitaitteeaitteeasteeeateeesteeesbe e e saaee s amse e s sabe e e ambeeaaabeeaasbeeanneesneeeanneeeas 31
CREATE OR ALTER PROCEDUREcciiitiiaitiitaiitieaaiieeasiteeasteeessiseessseessseessnneesnneeesneeesnneeens 32
DROP PROCEDUREcouttttittitaitteeatteeateeeateaeateeeateeeasbeeessbeeeasbeeeasbeeeanbeeeasseesaneeeansneeaneeeans 32
RECREATE PROCEDUREcoiiuttiiitiaatiieatteeateaeasteeessbteeasbeeessteeaasteesabseesseeesneeesnbeeesnseeennneas 32
SEQUENCE OF GENERATORuttiiiuttteateteateteateeeasteaeamteaaaateaaasteeaasseeaasseeaabeeeaabseeanseesnbeeesnneeesnneeas 33
CREATE SEQUENCEoiuutiiitiieaitee et e ettt et e et e et e e sab e e amb e e e aab e e e st e e abseeanbbeesabeeeanbeeeanneeeas 33
CREATE GENERATOR ..uttieiutiteitteeeatteeaatteeaatteeateeeateeesabeeeasbeeesabeeessbeeesmbeeaabbeesbeeesbneeanneeens 33
ALTER SEQUENCEeiiutiieiuiiie ittt eeteeeattee ettt e s abee ettt e sabe e e ssbe e e asbe e e aab e e e aabe e e asbeeabbeeanbeeeanneeeanes 34

SET GENERATOR ...eiiiitieeiteeatiee ettt e ettt e aate e e sabe e e s bt e e sabe e e aa bt e e eab e e e bt e e e aas e e e be e e eabe e e eabeeeenbeeeanneas 34
DROP SEQUENCEeeiiutteeiutteeeuteeeaitteeatteeateeestseeabeaeaabeaeasbe e e asbe e e asbeesabseeabseesaneeeanbeeennneeenes 35
DROP GENERATOReiiiutiieiiteteiiteeeaiteeesibee e asbe e e aab e e e ssb e e e asb e e e sb e e aaseeeebe e e sabe e e anbeeeanbeeesnbeeeanneeeas 35
LY = TP UPR PR 35
(0 I 7Y = PP 36
ALTER TABLE .ottt ittt ettt ettt etttk ekt e e hb e e e ebb e e e kbt e e bs e e e bt e e e nbe e e e nbe e e annnas 40
RECREATE TABLE ..eeiiiitieiteie ittt ettt ekttt ekt e b e e bt e e e abe e e e e e e st e e e nnbe e e nnneeenes 43

LR L€ PRSP RUPR 44
(0 I 2 1] = PSPPSR 44
ALTER TRIGGERceutiieiitii ettt ettt ettt ettt et et ettt e st e e e sab e e e sab e e e aab e e e abb e e e bb e e e beeeanbeeeannneeas 48
CREATE OR ALTER TRIGGERuutiiiiiiiiiiieaitieeasitee ettt sttt ettt e e e snae e s snbe e e nnneeennneas 50
DROP TRIGGERceitttieitieattee ettt et eabe ettt e st e e aabe e e asbe e e as bt e ekt e e e sbeeabbeeanbeeeenbeeeanbeeeanneeens 50
RECREATE TRIGGEReiiiutiieiitiieittie e aitee et e et ettt et e et a e st e e aab e e e amb e e s anbeeanbeeebeeesnneeeannes 50
VIEW ettt etttk e st £ H 44k b £ e 4R E £ e 4R e £ e oA Rt e oA R e e e AR £t oAb e e e R bt e e hb e e e he e e e bt e e ane e e nnneas 51
CREATE VIEW ittt ettt etttk ekt ettt oottt oo a bt e e e m bt e e ea e e ekt e e e bt e e enbeeenneeeenneeas 51
RECREATE VIEW .ttt ettt ettt ettt e ettt e b e e skt e e b e e eab e e eabe e e eab e e e smbe e e nnb e e e nnne e e e 53

6. DML SEBIEIMENTSeeeeeeeiiie e ettt e et e e e s e e e e e e e s s s s n e e e e e e e e e e s e nn s rr e e e e e e e e s s s nnnrrnneeaeeeeaannes 54
0] I 1 TSR OPR 54
COLLATE subclause for text BLOB COIUMNSccuiiiiiiiiiieeiiiiee et 54
ORDER BY ..iittteittie ettt ettt ettt ettt e e sttt e e a bt e e R b et e e R b e e kbt e Rb e e e be e e e he e e e b e e e eab e e e enbe e e anbe e e nnneas 55

o I N USROS 55
Relation alias makes real name unavailablecceiiiiiiiiiiii e 55
RETURNING ...ttt ettt ettt ettt ettt ettt e e bt e s st et oo st e e e aab et e ekt e e e aab e e e bb e e e abe e e ebeeeanneeeanneas 55

O VAT PR 56
EXECUTE BLOCK ...ttitteteitieetteeaateeeaateee ettt e aseeeaabeesaabeeesabeeeaabe e e aabe e e eabe e e amb e e e abbeeeabbeeabeeeanbeeeannneens 57
COLLATE in variable and parameter deClarationsocoirrrieiiiiieeeiniieee e 59

NOT NULL in variable and parameter deClarationscoceviuiieeiiiiieee e 59
DOmains iNSEAd Of JELALYPEScouvereeeiiiiiee ettt e s e e e s e e e 59
EXECUTE PROCEDUREuciiiutiiiittiaaititeastteeateeeateaeateeeaabeaeasteeeaabeeeasbeeaasbeeaabeeeabeeeanbeeeanneeesnneeeas 60
1S = TP SUPR PR 61
INSERT ... DEFAULT VALUES ...ciiitiiiiiiie ittt ettt ettt aie e bee e s e e snbe e e e e e nnneeennneas 62
RETURNING ClAUSE ..ottt ettt ettt ettt sttt e e st e e sab e e e nibe e e nnb e e e 62
UNION allowed in feeding SELECToiiiiiiiiieeiiiiiee et et e e s e e 63
IMERGE ...ttt ettt ettt ettt ettt ettt ettt ekttt e a bt a bt e oAb e £ R h e £ oAb £t oAb e e e Ra e e e R b e e he e e e be e e enbe e e enbe e e anbeeennes 63
S I O TP 64
Aggregate functions: Extended fUNCLONEIITYcoooiriiiiiiiiiei e 64

[AS] DEfOre relation @lia@Sccocuueiiiiiii e 66
COLLATE subclause for text BLOB COIUMNSccuuiiiiiiiiieeiiiieee et 67
Common Table Expressions (“WITH ... AS ... SELECT”) ..iicuuiieiiiiiie et 67
Derived tables (“SELECT FROM SELECT™) ..eviiiiiiiieeiiirieeesiieeeessiiiee e s s e e s s e e s e e e s snnnees 69

Firebird 2.1 Language Ref. Update

S S = 010 IS] = 2T 70
GROUP BY ittt ittt et e e ettt e e e e e e ettt ettt e e e eeeese e e et aaa s eeeaaeesssbaa e seseeseassbaaaseeaesennees 72
HAVING: SHCLEN TUIES ..ttt e et e ettt e e e e et s e e e et s e s e stb s e s seabaseesssbnseaeees 73
0 T 73
ORDER BY ittt i e oottt e et e e ettt e e e e e e ettt et t e s eeeeteea et e reeeeeeeera e eeeeeetarar i raeaeaeanens 75

= Y TR 78
Relation alias makes real name UNaValabIeoiiiiieiiiiiie e 79
[T AT A TP 79

(6N L) N TR 80
WWVITH LOCK ittt e e e e eeeee e e e e e ettt et e e s e e e e e e e e et s eeeaesea e bbb s eesessesssa b sssesseenssbannseseesseenns 81

(U= BN I/ =TT 82
COLLATE subclause for text BLOB COIUNMINSciivueiiiiiieiee e eecee e e e et eesebs e e s sabs s e e s e s 83
ORDER BY ittt et ettt e et e e ettt e e et e ee et e et e e e e eeeeteea et reeeaeeeata e reeeaetanab i raeaaaeanres 83
= TR 83
Relation alias makes real name UNaValableoiiiieeiiiiiie e 83
RETURNING .ovttte e e eee ettt s e e e e e ettt s e e e e e e et e aea s e eeee s e e e e e baa s eseeeseesssbsan s seessessasbanaseessesennres 84

[LYY A TP 84
UPDATE OR INSERT ..iiitttttiiieeetiettet e e e e e e e eeteet s s s eeease s e et s seeeese s e st et seesestsassassseessssessraranseeeaes 85
7. TranSaction CONLIOl SEALEMENESiiieei ettt e et e et e e e e et e e e s et e e e s et e e s s et e s s st e e seban e eseransss 87
RELEASE SAVEPOINT ...iiiiiiiittiee e e ettt et ettt seeeeesee et aa e seseeaseeaseaaseesaasaessssaaassseesseessssaanssseessernssses 87
ROLLBAGCK ettt it e ettt et e e e et ettt e e e e e e e et ee et s eeeae s et e b e s seseeaseesae bt eseeaseeae s b s e sesesesessbaaaseees 87
ROLLBACK RETAIN L..iiiiiitttte et e e et eeeet e e e e e et et e te b s e s eeeees e s st seseeese s s bbb s eeeeeseenssbaanseseeeses 88
ROLLBACK TO SAVEPOINT etuuiiiitttiieitte e e e iete s e et st s e s ssb s e st st s e s s st s s s s st s esseba e sssbaaseeseranssns 88
ST = = @1 i TR 89
INEErNAl SAVEPOINTSiiieee ettt e e et e e e st e e s sne e e e e e e e e s anrnneeean 20
SAVEPOINES BNG PSQL ...ttt et e e e et e e e e e e e e enrees 20

SET TRANSACTION L..iiiieittie et e e et e ee et e e e e e e ettt e et e aeseeetate s s taa s seessesaesbas s eessesessbaaanasereessesssernnnsns 90
IGNORE LIMBO ... ittt e ettt e e e e ettt e e e e e e e et ettt e e e e e e e s eeab e eeeeeseesssaaaeseeeseseesasaannss 91

(0 T0: T I 11 1= U TR 91

NN (@ U 0 U1\ 5L 92

8. PSOL SEBIEIMENTS ...eeiiiiiiiiiiiiiiiiiiiei ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt e eee ettt ee et ettt et eeeeeeeeeeeeteeeeeeeeeseeeeeeeeees 93
BEGIN ... END blOCKS May D& @MPLYeeiieeiiiiiee et 93
] = TR 93
(T @S o B[£ o] N 94
D] =IO 1Y TR 94
DECLARE ... CURSOR ... ciiiittttiiiie e et iieee e e e e e e e et e a e s e e e aeeeeet s eeeeestesatb s seeeseeessaaaasaeeeees 95
DECLARE [VARIABLE] with initidizationcooooo i, 96
DECLARE with DOMAIN instead Of datatyPec.uvvveeiieeeiiiiiiiiiei e 96
COLLATE in vVariable deCIarationccuuuiiiiiiiiiiiiiies et e e e e e e e s e s s e e s e aaa s 97

NOT NULL N Variable AECIArationocceeuuiiiiiiiiie ettt e et e e e e e s e e e s s aaa e e e eaaas 97
2@ = =1 0 TR 97
Rethrowing a Caught EXCEPTIONveiieiiiiiee et 98
Providing @ CUSLOM EITON IMESSATEvveeeeitteeeeiaiireeeaaitteeeeaster e e s asae e e e s sner e e e s asbreeesanneeeeeannees 98
EXECUTE PROCEDUREccttutiiiittieeitteeeetete e e ettt se et st e s e s st sesta b eesssba s essssbassssesbassesesbassesssbaseenns 98
EXECUTE STATEMENT oettttiit e e et ie ettt e s e e e e e e ee e e s eeeeseeesas s seeeases s s s s s eeesesssssabasseseeseesssrnnnsss 99
N lo = e W =10 01<.o T 99

(@] 0TS {0}V VA0 0 = 7= W (= 10 1 0110 [100

Any number of data rOWS rEfUMEcueriiiiiiiee e 100
Caveats With EXECUTE STATEMENT .eutiiiiiie it ee et e e et e e e et s e e seta s s s ssab s e s sesbasessssanseasees 101
[TSR 101
L O o | P 101
FOR EXECUTE STATEMENT ... DO ovtuiiiiiit i iitt ettt e e ettt s e e sttt s e sttt s e s ssaa s s ssaaa s s ssaanssasasanseesenes 102

Firebird 2.1 Language Ref. Update

FOR SELECT ... INTO ... DO otiiiiiiiiee ittt e ettt ettt ettt e e e et e e e e e e e e e nne e e e s annneeeeane 102
AS CURSOR ClAUSE ...ceeiuiiiteeaaitieee e ettt e e ettt e e ettt e e e ettt e e e sttt e e e sbb e e e e enbe e e e e anber e e e e nnnn e e e e enres 103
LEAVE ittt E e e oo E e et e e R e et e e e R R et e e e n et e e e b e et e e e nne e e e e nnnes 104
OPEN CUISOEeeeteeetttue e e e e eeeeeaste s e e e e e eeeeseaa s s e aaeeeee s s a e s e eaeeeeessana e s aaeeeeeessana s aeaaeeeennsnnnsaaaaaaaenes 105
PLAN allOWeEd IN trIQGEN COUReiiiiiiiiiie ettt e e e e e e e s e e e aae 106
UDFs callable as VOId FUNCLIONSooiiiiiiiieiiiee e 106
WHERE CURRENT OF valid again fOr VIEW CUISOISccuuriiiiiiiieesiiiieee st e e s e siene e s 106
9. CONEEXE VAITAIIES ..ottt ettt e et e e et e e e et e e e e anbbe e e e e anbneeeeans 107
CURRENT_CONNECTT ON ...itttietiitet ettt et e s st e e s amb et e e e st e e e annne e e e nnnn e e e s annnneees 107
CURRENT _ROLE ..ottt ettt e s et e e s e e e e e e e e e e e anreeeeaa 107
CURRENT _TI ME ettt ettt ettt e sttt e e ek et e e sttt e e as et e e e e et e e e nnae e e e annrneeeaa 108
CURRENT _TI MESTAMP ...ttt ettt ekttt e et e e e st e e e ek e e e e e s e e e e e st e e e e e annrneeeaas 109
CURRENT_TRANSAGCTT ON .t tuitttee ettt sttt e e st e e e s st e e s abbe e e e e ansae e e e e nnnne e e s annneeenan 109
CURRENT _USER ...ttt ettt e et e+ ekttt e e ettt e s e e e e e e e e e e e nnnnneeeaa 110
Dt I I P 110
(€ D510 B TP PUPRPP PP 111
ST = 2 3 I TP PP PPSPPPPPN 111
INEWV etttk e ek e ek e e oA et e o R R et e e oA R e e e e e e R e et e e e b b et e e e be e e e e e e e e s 112
B 1O PRSP OUPPPPON 112
(@ I L OO OPPPPTRPPPRPPN 113
ROMV COUNT .ttt ettt e ekttt e o4t e 44 sk et e e 2kttt e 24 as bttt e e e b e e e e e anbe e e e e e nnn e e e e ennnes 114
(0 IO B PP PUTRPP PP 114
L I3 L I N PSP 115
10. Operators and PrefiCaLESccoiuiriieiiiiee ettt e e e e e et e e e anbr e e e s e nne e e e s arreeeeaan 116
NULL literals allOWed @S OPEIENGScoourrieeiiiiiiee ittt e e e e aineeas 116
[| (SEFING CONCBLENGLOT) ...iiteeeeette ettt ettt e e ekt e e e et e e e e st e e e e e e b e e e e annbe e e e e anbneeeeanes 116
TEXt BLOB CONCALENALIONuittiieiiiiiteee ettt e ettt e e et e e st e e s st e e e et e e e st e e e e s e e e e annneeas 116
Result type VARCHAR OF BLOBcciiiiiiiieiitiieeaiiteee e ettt e s st e e e s ssbne e e s annneeaesannreeessnnneeenans 117
OVEITIOW CRECKING ...ttt e e nnnee e e e ane 117

2 I PP PO PPPPPPPPPI 117
NULL [IteralS @llOWEDoeiiiiiiiiie ettt e e e e 117
UNION 8S SUDSEIECTeeiiiiiiiie ettt ettt e e e e e e s e e e 117
ANY] SOME ..ttt ettt et e oot e e h ettt e e n et e e e bt e e e e e e e e e e e e nnnnes 117
NULL [IteralS @llOWEDoeiiiiiiiiie ettt nnee e e ane 118
UNION 8S SUDSEIECTeeiiiiiiiie ettt ettt e e e e e e s e e e 118

N PP P P PPPRTPO 118
NULL [IteralS @llOWEDoeiiiiiiiiie ettt nnee e e ane 118
UNION 8S SUDSEIECTeeieiiiiie ettt s et e e e e s e e e 118

IS [NOT] DISTINCT FROM ..cciiitiiteiiittieeeatiete e sttt e e et e e s asee e e e s asse et e e asbe e e e e aanbe e e e aanbe e e e e annneaeeannes 118
NEXT VALUE FORiitiiiiiittit ettt etttk e ekttt e e et e e e e bt e e e e e st e e s aas et e e e nbae e e e annneeeeans 119
SOME ettt E e e o R ettt e e R e et oo AR e et et e R b e et e e e R et e e e e e e e e nnrreeenas 120
11, AQQregate FUNCLIONSeeiiiiiiieee ittt e ettt e et e e e ea b e e e e s bbe e e e s anb e e e e e nbn e e e e annreeeeans 121
[Y T TSP PP PP PP PPN 121
Y PO TSP PP PPPRPPPPPRPPN 122
Y TN T O PP PPP U PUPRPPRPPPRRPN 122
12, INEENEL TUNCLIONS ...ttt e e e st e e et e e e et e e et e e e e e anne e e e e e 124
F = | TP PP PP PP PPPPRPPRPPTPRP 124
F N @0 S | TP PR P PPPPPPPPPPRPI 124
ASCIH_CHAR() tttttetutttte ettt e ettt e ekttt e e st e e ookt e o4 ek e et e e 4 ab et e e e a b et e e e an b e e e e e e nne e e e e nrnneeeaan 125
ASCI_VAL() -tttteeemtteee e ettt e e ettt e e ettt e e ettt e e ek e e e a4 skttt e 42kt e e 4 e n Rt e £ e e e R b et e e e e et e e e anb e e e e e nnn e e e nre s 125
F S N TP OPPRPP 126
F A Y L TS PP PP R OPPPRPTPPPRP 127

Vi

Firebird 2.1 Language Ref. Update

ATANZ() oottt eeeeee et ee et e et et et et et ee et et et et et st ee et et eteeeseteseteseee s et et et ee et et et et et et et et et et et et et et et et et et eeeeeeens 127
BIN_AND() +.vevvveeeeeteeeteteteteteeeteeeeeeete e st e e s e et st st st e e st s e e e e s st e e s e s e e e sesese st st et et s e s e e e et st et eeee et et et e e st et et e et aneeas 128
BIN_OR() v.vveveveeeeeeeeeeeeesesesesesssssesesesesesesesesesesesesesesesesasesesesesesesesesesesesesesesasesesesssasesasesesseesesseasasas 128
BIN_SHL() +eevereeereeesesesesesesssessssessss st st s s s s s s st s s s s s s st s s s s s s s s s s s s s s enenenenenennans 129
BIN_SHR() «.vveveeteeeeesesesesesesssesesesesesesesesesesesesssesessseseseseseseseseseseseesseeesesessessesseeeeseeeeeseseseeeeeeseeeeneens 129
BIN_XOR() v.vvvveeeeeseesesesseesssesssesesesesesesssesesesesesssesssessseseseseseseseeesesesesesesenesesesesenenenenenenenn s s nanan 130
BIT LENGTH() «vveveeeeeeeeeeeeeeeeseseeesesssssssssesesesesesesssesssssesesesesesesesesesesesesssesesesesssesesesesesasesesesesasanas 130
CAST() veeeeeeeeeeeeeeeeee et e et et ee e e et et eeee e e e e et eeeeeeeeee et et es et ese s et et et et eee e et et et et etete s et et et et et et et et et et et et et et et et etanas 131
CEIL(), CEILING() «eevererererersseseseseseseseseseseseseseseseses s s s s sessess s s s s s s s s s s s s s enenenenenenenenennans 133
CHAR_LENGTH(), CHARACTER _LENGTH() ...vvvevieeeeeeeeeeeeeseeesesteesesesesteteteesesessesstessessesaseseseessanans 134
COALESCE() v.vvvveteteeeeeeeeeeeeeeeeseeeeesessseesesesseeseseseseseseseseseseeesasesesesesesesesesesesesesasesesesesesasaseteeesasns 135
COS() rvreeeeeeeeeeeeeeeeeeeeseeseeeeeee e e eseeseee s e s et eee e s et esee e ee et et e et et e et et ee et et et ee et r e 136
(101 3 0 NPT 136
(o701 | TP 137
DATEADD() o.vveeeeeeeteeeeeeeteeeeseeese et seseseseeeeeeeeeeseseseseseseseseseseseseseseses et eseteseseseteses et et eteteteeeeeteseearanas 137
DATEDIFF() ovteeeeeeeeeeeeeeeeeeeeeseseseseeesesesesseeeseeeesseseses et eseeeseseseseseseseseseseeeseseseseseseseseseseseteseseseseeasaeas 138
(3]0 0] =) N 139
EXP() vuvveeeeeeeeeeteeeeeteteesteteteee e et eeesete e et et et etet et et et et et et et et ee eterane 140
EXTRACT() +.veeeeeeeeeeeeeee et et ete s et ee et eeee et et et et et et et et et et et et e et et e st et et et es s ee et et et et et et et et et et s et esenesesenesenenaes 140

MILLISECOND ...ttt ettt eeeees e e s eeeseseeeseseseeeseseseseseseeeseseseeeseseteseseseseseeeeanas 141

WEEK .ottt ettt ettt ettt ettt ettt e ettt s et et et ettt et et es et et en ettt et ettt et ettt en et ettt en et enenenenenenans 141
=T TP 142
GEN_ID() +eeeeeeeeeee ettt eeeeet et ee et et e et et e e et et ee e et ee e s ettt et et et et es et et et es et et et en et et en et s sttt en et en et s e enenns 142
et ULV oY R 143
HASH() vttt ettt ettt ettt ettt ettt et et e et e ettt e s et et ettt et ettt s et ettt ettt ee et ettt ettt ettt ettt enenenenns 143
1= NPT 144
1= = OO 144
T NP 145
(10 1 NP OO 145
(10310 PP 146
LOWER() +.vvvteeeeeeeeseeeseseseseeesesesesesesesesssesesessssessseseesseeeesseseseseseseseeeseseseeeseeeteseseseseeeeeseeeeeseseseeneens 147
107N o OO 147
MAXVALUE() vttt ee et e et et etasetesesetesetesesesetesetesesasesasesesesesasesesesesesesasanas 148
IMINVALUE(oottt ettt ee ettt s ettt ee s s et et s et s s s st en et en s s s st es s s s s st en s s s en s s en s s s enenenans 149
IMOD() v vveeeeeeeeeeeeeeeeeeeeee et eeeeeeeeeeeeeseees et esee et eseseseseseseseseseses et et et et etes et et et et eeetetesetesetet et et et etesereeatens 149
NULLIF() ©vveteteeeeeeeeeeseeeseseeseesesseesesesesesssesssessesesssesesssesesssesssesesesesesesesesesesesssesessseseseseseseseseseseseeens 150
OCTET_LENGTH() v.vveveveteteteeeeeeeeeeesesetesssesssetssesesssssesesasssesssssssssssssssesssssssssesesssssssssssesssssssssasasanns 151
(oY= 21N 7 NP 152
PL(rerereeee e e et et e e ettt ettt ettt ettt ettt ettt ettt st ettt ettt et ettt et ettt et en sttt enenenenenenenenans 153
POSITION() vevevvveeeeeeeeee e te et et ee s st et ee et e e e e ee et sese st seeeee et et s e e e eeeeee e se et et et esee st s s st e s st s st eseseseseesessnesesees 153
POWER() .. eeteteteteseseseseseseseseseseseseseseseses st s s sesesesesesesesas s s s s s s s s s s s s s s s s s s ennennennnennnas 154
=YY N o7 T 155
RDBSGET _CONTEXT() vuvuvoveeeeeeeeesestsestsesesesesesesesestsssesssssesssesssssssssesesssesssesesssssssssssesssssessessessanas 155
RDBSSET _CONTEXT() +.vovvvveeeeeeeeeeesesesseesesesssssssesssssssesssssssesssssesssesesssesesssssssssssesesesessnenenennnenes 157
REPLACE() v.vvveteteteteteteteeetetsteteteteeseeeesateseseteseseseseessesneens 158
REVERSE() ...v.vvvtetetetetetseetetseesesesesssesesasssesesesesesesssssesessseeens 159
=TT s 0 OO 159
ROUND() «.vvveeeeeseeeeesesesesesesesesesesesesesessseseseesesessseseesseeessseseseseseseseseseseseseseseteseseseseseseseseseseseseeeeens 160
2N o OO 161
SIGN() +evrereeeeeeeeeeeeeeeeseeeeeeseeseeseeeseeseeeeseee e e s e s et eee et et e st e e ee s et e et et ee s ettt e et et e s enee 162
SINQ) +vvvereeeeeseeeeseeeeeeeeeeeeseeeeee et eeeee e e s e s ee e e ee e et eeeee et e st e ee e et e ettt e et et ee ettt eree 163
SN0 OO 163

Vii

Firebird 2.1 Language Ref. Update

0 8 I SRR RURRRR 164
SUBSTRING() +.uvveuveeureitieeteeteeseeeteasteaseesteessesseeaseassesseeassaseesseesseesseassesseessessseseassesssessesnsesseeaseaneeas 164
TAN() cete ittt ettt ettt ettt e et e et e et e et e e teeaeeeteeteeateete e beeateeheeteeateebeebeenteetaebeentearaeabeenteeaeeateenreereenns 165
TANH() «teetteete ettt ettt et ettt et e et e e et e eateete et e eaeeeaeeteeseeebeeateeaeeebeeateeaeeateenteeaeeebeenteeaeeteenteeaeeteeneeans 166
TRIMU() +uveetteete et eteeeteeteete e ete et e eaeebeeateeteebeeaeeebeebeeseeeasebeeseeessenbeensestsesbeeneeessenbaansesreenseanseaseeneeas 166
TRUNGC() +.vveteeteeteeete et et e ete e eteeete et e eteeebeesteeaeeateesseeae e teeseeebeesseesseaaeesteeseesbeensesaseaseenseeseesreeneenns 167
UPPER() +.uvtetteiteeteetteeteeeteesteeteeeteeateeaeeeteesteebeeseeaeeeaeeeteeaseeseeabeenseeaseabeesteesseabeenteeaseateenteeneeareeneenns 168
13. External fUNCLIONS (UDFFS)ocoiiiiiiiiiiiie ettt e e e e e e 170
= o 1 170
= Lo o 1 170
= o o |57 PP 171
= Lo [0 | 11 1 171
F= Lo [o 11N I RS TSY o2 o] o [N 172
= Lo [0 1Y I 0 = 172
F= Lo [0 1Y, 0 o | S o 173
F= Lo [0 IS TST o2 o] o [173
F= L0 [0 ALY 173
= Lo [0 I =T | 174
ASCI I _Char 174
=Y ol I V2> Y TR 175
= LY I 176
= L= 1 1 1 176
= L= 1 2 177
0TI 0 T = U U TR 177
oY1 o T | SRR 178
0TI 0 T 01 PPN 178
LI | T Mg oo 178
oo 1N 179
(o7 0 1] o 179
oo) N 180
o [0 111V 180
[0 0T 0 1Y R 181
0 Yo 1 181
OET EXACT Ti IMEST @ITP it 182
IS o 1 U o o 182
ST A U (= X 182
0 o T 182
L O e 183
L OGL0 e 183
10 1. 184
I = T T 185
O T 0 186
10 186
S 10 T 187
Lol 0 1V 188
O N 189
L= o R 189
F T Gt 190
(0T 1 o I I S 7 o 10 o o T 190
0 = Lo T 191
T T 2 192
LYo [0 1117 193

viii

Firebird 2.1 Language Ref. Update

LY o | o TR 193

LY 1 TP PP PP PURRPTPPIN 194

SI NN 194

LY o | g ST PP 195

LY =1 0 o E PP PP P RTTPPPTPPPPRPPRPPINE 195

LS 1 | 0 R 196

L3 A ST Yo 122 o I o] TP 196

LS S = o R 196

LS 011 A 197
SUD S T L BN e 198

L= TP TP URRPPPPIN 199

L AN 199
ETUNCAL €, 1 BAL T UNCAL © .oiieeeiiii et e et e et e e st e e s e s et e e e e e e b e s ab e e raneeernss 200
APPENAIX AL INOLES ...ttt e et e e e et e e e e b et e e e e s b et e e e nb e e e e e b n e e e e e e e nnes 202
Character set NONE data aCCEPIEA “@S IS” ...vviieiiiiiieeiiiiie ettt 202
Understanding the WITH LOCK ClAUSEcociiuriiieiiiiee et 203
Syntax and DENEVIOUNueiiiiiii e 203

How the engine dealS With WITH LOCKcciiiiiiiiiiiiiee ettt 204

The optional “OF <col uM- NaMeS>" SUD-ClAUSEcuvviiiiiiiie e 205

CaveatS USING WITH LOCKuiiiiiiiiiiieeeiieie ettt e st e s et e et e e e e e s e st e e e s annn e e e e annnneeas 205

Examples using eXpliCit I0CKINGuviieiiiiiie e 205

A NOte 0N CSTRING PAIAMELENSeeverereiererererererererererererere e e rerererererersrennrnnnns 205
Passing NULL t0 UDFS iN FIrehird 2coooiiiiiiiiiiei et 206
“Upgrading” i b_udf functionsin an existing databasecccceeviiiiiiiiiiiiic e 207
Maximum number of indices in different Firebird VErSIONSccceeeiiiiiiieiiiiieceeee e 207

The RDBSVALID BLR fi€ld oo 208
AppendixX B: DOCUMENT HISIOTYueiiiiiiiii ittt e st e e nnnee s 209
APPENAIX C: LICENSE NOLICEeeeeeeiiteee ettt e et e e e st e e e e esb et e e e anbe et e e e nbr e e e e anreeeeaans 216

List of Tables

4.1. Character SetS NEeW iN FIFEDINTooiiiiiiiie et e e 11
4.2. Collations NeW iN FIreDIrdooiiiiiie e 13
5.1. Specific COllation @LITDULESeeiiiieii e e e e e e e e s s e e e e e e e e e eanes 16
5.2. Maximum indexable (VAR)CHAR IENGLN ... 26
5.3. Max. indices per table, FIrebird 2.0oooiiiiiiiiiie e 27
6.1. NULLs placement in ordered COIUMNScoooiiiiiiiiiiiriece e e e e e e e e e e e s e eaneees 77
10.1. Comparison of [NOT] DISTINCT 10 “=" @and “<>" .. iiiciiiiieiie e 119
R oSS o L= @7 N IR 132
12.2. Types and ranges Of EXTRACT FESUILScoiieiiiiiiiiiieeee e e e sttt e e e ettt e e e e e s e s s e e e e e e e e s e e nnnees 141
12.3. Context variables in the SYSTEM NAMESPACEc.coecuiviiieiieeeeiicitiiee e e e e e e s e seitaae e e e e e e e s e ssnnareeeeeeas 156
A.1l. How TPB settings affect expliCit I0CKINGvvieiiieeiiiiiiieiie e 203
A.2. Max. indices per table in Firebird 1.0 — 2.0 ... 207

Chapter 1

Introduction

Tip

This documentation is outdated. Find a more recent Firebird Language Reference at Firebird 5.0 L anguage
Reference

For other documentation, visit Firebird Documentation Index

Subject matter

What's this book about?

This guide documents the changes made in the Firebird SQL language between InterBase 6 and Firebird 2.1.x.
It coversthe following aress:

* Reserved words

» Datatypes and subtypes

» DDL statements (Data Definition Language)

» DML statements (Data Manipulation Language)

» Transaction control statements

e PSQL statements (Procedural SQL, used in stored procedures and triggers)
» Context variables

» Operators and predicates

» Aggregate functions

* Internal functions

» UDFs (User Defined Functions, also known as external functions)

To have acomplete Firebird 2.1 SQL reference, you need:

* ThelnterBase 6.0 beta SQL Reference (LangRef . pdf and/or SQLRef . ht mi)
» Thisdocument

Non-SQL topics are not discussed in this document. These include:

* ODSversions

* Buglistings

 Installation and configuration

» Upgrade, migration and compatibility
» Server architectures

* API functions

» Connection protocols

» Toolsand utilities

Consult the Release Notes for information on these subjects. You can find the Release Notes and other
documentation via the Firebird Documentation Index at http://www.firebirdsgl.org/en/documentation/.

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/firebird-50-language-reference.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/firebird-50-language-reference.html
https://www.firebirdsql.org/en/documentation/
http://www.firebirdsql.org/en/documentation/

Introduction

Versions covered

This document covers al Firebird versions up to and including 2.1.4.

Authorship

Most of this document was written by the main author. The remainder (3-4%) was lifted from various Firebird
Release Notes editions, which in turn contain material from preceding sources like the Whatsnew documents.
Authors and editors of the included material are:

» J Beedey

* Helen Borrie

e Arno Brinkman

* Frank Ingermann

e Vlad Khorsun

* Alex Peshkov

* Nickolay Samofatov

* Adriano dos Santos Fernandes
e Dmitry Yemanov

Chapter 2

Reserved words and keywords

Reserved words are part of the Firebird SQL language. They cannot be used as identifiers (e.g. as table or
procedure names), except when enclosed in double quotes in Dialect 3. However, you should avoid this unless
you have a compelling reason.

Keywords are also part of the language. They have a special meaning when used in the proper context, but they
are not reserved for Firebird's own and exclusive use. Y ou can use them as identifiers without double-quoting.

Added since InterBase 6

Newly reserved words

The following reserved words have been added to Firebird:

BIGINT
BIT LENGTH

BOTH

CASE

CHAR_LENGTH
CHARACTER_LENGTH
CLOSE

CONNECT

CROSS
CURRENT_CONNECTION
CURRENT ROLE
CURRENT_TRANSACTION
CURRENT USER
DISCONNECT

FETCH

GLOBAL

INSENSITIVE

LEADING

LOWER

OCTET_LENGTH

OPEN

RECREATE

RECURSIVE

RELEASE

ROW_COUNT

ROWS

SAVEPOINT

SENSITIVE

START

Reserved words and keywords

TRAILING
TRIM
USING

New keywords

Thefollowing words have been added to Firebird as non-reserved keywords. Most of them are names of internal
functions added between 2.0 and 2.1.

ABS
ACCENT
ACOS
ALWAYS
ASCIl_CHAR
ASCIl_VAL
ASIN
ATAN
ATAN2
BACKUP
BIN_AND
BIN_OR
BIN_SHL
BIN_SHR
BIN_XOR
BLOCK
CEIL
CEILING
COALESCE
COLLATION
COMMENT
cos

COSH

coT
DATEADD
DATEDIFF
DECODE
DELETING
DIFFERENCE
EXP
FLOOR
GEN_UUID
GENERATED
HASH

NIz
INSERTING
LAST
LEAVE
LIST

LN

LOCK
LOG
LOG10

Reserved words and keywords

LPAD
MATCHED
MATCHING
MAXVALUE
MILLISECOND
MINVALUE
MOD

NEXT
NULLIF
NULLS
OVERLAY
PAD

Pl

PLACING
POWER
PRESERVE
RAND
REPLACE
RESTART
RETURNING
REVERSE
ROUND
RPAD
SCALAR ARRAY
SEQUENCE
SIGN

SIN

SINH

SPACE
SORT
STATEMENT
TAN

TANH
TEMPORARY
TRUNC
WEEK
UPDATING

Dropped since InterBase 6

No longer reserved

The following words are no longer reserved in Firebird 2.1, but are still recognized as keywords:

ACTION
CASCADE
FREE IT
RESTRICT
ROLE
TYPE

Reserved words and keywords

WEEKDAY
YEARDAY

No longer keywords

The following are no longer keywordsin Firebird 2.1:

BASENAME

CACHE
CHECK_POINT_LEN
GROUP_COMMIT_WAIT
LOG_BUF_SIZE
LOGFILE
NUM_LOG_BUFS
RAW_PARTITIONS

Possibly reserved in future versions

Thefollowing words are not reserved in Firebird 2.1, but are better avoided asidentifiers because they will likely
be reserved — or added as keywords —in future versions:

BOOLEAN
FALSE
TRUE
UNKNOWN

Chapter 3

Miscellaneous
language elements

-- (single-line comment)

Tip

Find amore recent version at Firebird 5.0 Language Reference: Comments

Availablein: DSQL, PSQL
Added in: 1.0
Changedin: 1.5

Description: A line starting with “- - ” (two dashes) is a comment and will be ignored. This also makes it easy
to quickly comment out aline of SQL.

In Firebird 1.5 and up, the “- - " can be placed anywhere on the line, e.g. after an SQL statement. Everything
from the double dash to the end of the line will be ignored.

Example:

-- atable to store our val ued custoners in:
create table Custoners (

nane var char (32),

added_by varchar (24),

custno varchar(8),

pur chases i nteger -- nunber of purchases

)

Notice that the second comment is only allowed in Firebird 1.5 and up.

Shorthand casts

Tip

Find a more recent version at Firebird 5.0 Language Reference: Datetime Literals

Availablein: DSQL, ESQL, PSQL

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-structure-comments.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons.html#fblangref50-commons-datetime-literal

Miscellaneous language elements

Added in: IB

Description: When converting a string literal to a DATE, TIME or TIMESTAMP, Firebird allows the use of a
shorthand “ C-style” cast. This feature already existed in InterBase 6, but was never properly documented.

Syntax:
dat atype 'date/timestring'
Examples:

updat e People set AgeCat = 'dd'
where BirthDate < date '1-Jan-1943'

i nsert into Appointnents

(Empl oyee_Id, Cient_Id, App_date, App_tine)
val ues

(973, 8804, date 'today' + 2, tinme '16:00")

new. | astnod = tinestanp ' now ;

See also: CAST

CASE construct

Tip

Find amore recent version at Firebird 5.0 Language Reference: CASE

Availablein: DSQL, PSQL
Added in: 1.5

Description: A CASE construct returns exactly one value from anumber of possibilities. There aretwo syntactic
variants:

* Thesimple CASE, comparableto aPascal case oraCswi t ch.
e Thesearched CASE, which workslikeaseriesof “if ... else if ... else if” clauses

Simple CASE
Syntax:

CASE <t est - expr >
VWHEN <expr> THEN resul t
[WHEN <expr> THEN result ...]
[ELSE defaul tresult]

END

Whenthisvariantisused, <t est - expr > iscomparedto<expr > 1, <expr > 2 etc., until amatch isfound, upon
which the corresponding result is returned. If there is no match and thereis an ELSE clause, def aul t r esul t
isreturned. If there is no match and no ELSE clause, NULL is returned.

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons.html#fblangref50-commons-conditional-case

Miscellaneous language elements

The match is determined with the “=" operator, so if <t est - expr > is NULL, it won't match any of the
<expr >s, not even those that are NULL.

The results don't have to be literal values: they may aso be field or variable names, compound expressions,
or NULL literals.

A shorthand form of the ssmple CASE construct is the DECODE() function, available since Firebird 2.1.
Example:

sel ect nane,
age,
case upper (sex)
when 'M then ' Mal €'
when 'F' then ' Femral e’
el se ' Unknown'
end,
religion
from peopl e

Searched CASE
Syntax:

CASE
WHEN <bool _expr> THEN result
[WHEN <bool _expr> THEN result ...]
[ELSE defaul tresult]

END

Here, the <bool _expr >s are tests that give a ternary boolean result: TRUE, FALSE, or NULL. The first
expression evaluating to TRUE determines the result. If no expression is TRUE and there is an ELSE clause,
def aul t resul t isreturned. If no expression is TRUE and there isno ELSE clause, NULL is returned.

As with the simple CASE, the results don't have to be literal values: they may also be field or variable names,
compound expressions, or NULL literals.

Example:

CanVote = case
when Age >= 18 then ' Yes'
when Age < 18 then ' No'
el se ' Unsure'
end;

Chapter 4

Data types and subtypes

BIGINT data type

Tip

Find amore recent version at Firebird 5.0 Language Reference: BIGINT

Added in: 1.5
Description: BIGINT is the SQL99-compliant 64-bit signed integer type. It isavailable in Dialect 3 only.
BIGINT numbers range from -2%3 .. 2531, or -9,223,372,036,854,775,808 .. 9,223,372,036,854,775,807.
Example:
create table Wol eLottaRecords (
id bigint not null primry key,

description varchar (32)

)

BLOB data type

Tip

Find amore recent version at Firebird 5.0 Language Reference: Binary Data Types

Text BLOB support in functions and operators
Changedin: 2.1,2.1.5

Description: Text BLOBs of any length and character set (including multi-byte sets) are now supported by
practically every internal text function and operator. In afew cases there are limitations or bugs.

Level of support:
* Full support for:
- = (assignment);

- =,<>, <, <=, >, >= and synonyms (comparison);
- || (concatenation);

10

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-datatypes.html#fblangref50-datatypes-bigint
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-datatypes-bnrytypes.html

Data types and subtypes

- BETWEEN, IS[NOT] DISTINCT FROM, IN, ANY|SOME and ALL.
« Support for STARTING [WITH], LIKE and CONTAINING:

- Inversions 2.1-2.1.4 (as well as 2.5) an error is raised if the second operand is 32 KB or longer, or if
the first operand is a BLOB with character set NONE and the second operand is a BLOB of any length
and character set.

- Inversions2.1.5 and up (aswell as 2.5.1 and up), each operand can be aBLOB of any length and character
Set.

e SELECT DISTINCT, ORDER BY and GROUP BY work on the BLOB |D, not the contents. This makes them as
good as useless, except that SELECT DISTINCT weeds out multiple NULLS, if present. GROUP BY behaves
oddly in that it groups together equal rows if they are adjacent, but not if they are apart.

» Anyissueswith BLOBsininternal functionsand aggregate functionsare discussed in their respective sections.

Various enhancements

Changed in: 2.0

Description: In Firebird 2.0, several enhancements have been implemented for text BLOBS:
* DML COLLATE clauses are now supported.

» Equality comparisons can be performed on the full BLOB contents.

e Character set conversions are possible when assigning aBLOB to aBLOB or astring to aBLOB.
When defining binary BLOBS, the mnemonic bi nar y can now be used instead of the integer 0.

Examples:

sel ect NameBl ob from MyTabl e
where NaneBl ob collate pt_br = 'Joao

create table MyPictures (
idint not null primary key,
title varchar(40),
descri pti on varchar (200),
picture blob sub_type binary
)

New character sets

Addedin: 1.0, 1.5, 2.0, 2.1

The following table lists the character sets added in Firebird.

Table4.1. Character setsnew in Firebird

Name Max bytes/ch. L anguages Added in

CP943C 2 Japanese 21

11

Data types and subtypes

Name Max bytes/ch. L anguages Added in
DOS737 1 Greek 15
DOS775 1 Baltic 15
DOS858 1 = DOS850 plus€ sign 15
DOS862 1 Hebrew 15
DOS864 1 Arabic 15
DOS366 1 Russian 15
DOS869 1 Modern Greek 15
GBK 2 Chinese 21
1SO8859 2 1 Latin-2, Central European 1.0
1SO8859_3 1 Latin-3, Southern European 15
1S0O8859 4 1 Latin-4, Northern European 15
1S08859 5 1 Cyrillic 1.5
1SO8859_6 1 Arabic 15
1SO8859 7 1 Greek 15
1SO8859_8 1 Hebrew 15
1SO8859 9 1 Latin-5, Turkish 15
1SO8859_13 1 Latin-7, Baltic Rim 15
KOI8R 1 Russian 20
KOI8U 1 Ukrainian 20
T1S620 1 Thai 21
uTFg) 4 Al 2.0
WIN1255 1 Hebrew 15
WIN1256 1 Arabic 15
WIN1257 1 Baltic 15
WIN1258 1 Viethamese 20

OlIn Firebird 1.5, UTF8isan alias for UNICODE_FSS. This character set has some inherent problems. In Firebird 2, UTF8 is a character set
in its own right, without the drawbacks of UNICODE_FSS.

Character set NONE handling changed

Changedin: 1.5.1

12

Data types and subtypes

Description: Firebird 1.5.1 has improved the way character set NONE data are moved to and from fields or
variables with another character set, resulting in fewer trandliteration errors. For more details, see the Note at

the end of the book.

New collations

Addedin: 1.0,1.5,15.1, 20,21

The following table lists the collations added in Firebird. The “Details’ column is based on what has been
reported in the Release Notes and other documents. The information in this column is probably incomplete;
some collationswith an empty Detailsfield may still be caseinsensitive (ci), accent insensitive (ai) or dictionary-

sorted (dic).

Please note that the default — binary — collations for new character sets are not listed here, as doing so would
add no meaningful information.

Table4.2. Collationsnew in Firebird

Character set Coallation Language Details Added in
CP943C CP943C_UNICODE Japanese 21
GBK GBK_UNICODE Chinese 21
1SO8859 1 ES ES CI_Al Spanish ci,a 20

FR_FR Cl_Al French ci,a 21
PT BR Brazilian Portuguese ci,a 2.0
1SO8859 2 CSs Cz Czech 10
ISO_HUN Hungarian 15
1SO_PLK Polish 2.0
1SO8859_13 LT_LT Lithuanian 151
UTF8 UCS BASIC All 2.0
UNICODE All dic 2.0
UNICODE_CI All Ci 2.1
WIN1250 BS BA Bosnian 2.0
PXW_HUN Hungarian Ci 10
WIN_CZ Czech Ci 2.0
WIN_CZ_CI_Al Czech ci,a 2.0
WIN1251 WIN1251_UA Ukrainian and Russian 15
WIN1252 WIN_PTBR Brazilian Portuguese ci,a 2.0
WIN1257 WIN1257_EE Estonian dic 2.0

13

Data types and subtypes

Character set Collation Language Details Added in
WIN1257 LT Lithuanian dic 2.0
WIN1257 LV Latvian dic 2.0
KOI8R KOI8R_RU Russian dic 2.0
KOI8U KOI8U_UA Ukrainian dic 2.0
T1S620 T1S620_UNICODE Thai 21

A note on the UTF8 collations

The UNICODE collation sorts using UCA (Unicode Collation Algorithm): a, A, & b, B...

The UCS BASIC collation sorts in Unicode code-point order: A, B, a, b, &.. Thisis exactly the same as UTF8
with no collation specified. UCS BASIC was added to comply with the SQL standard.

UNICODE_CI istruly case-insensitive. In asearch for e.g. 'Apple, it will also find 'appl€e’, '"APPLE' and 'aPPL€'.

Unicode collations for all character sets

Added in: 2.1

Firebird now comes with UNICODE collations for all the standard character sets. However, except for the ones

listed in the new collations table in the previous section, these collations are not automatically available in your
databases. Instead, they must be added with the CREATE COLLATION statement, like this:

create collation | S08859 1 UNI CODE for |S08859 1

Thenew Unicode collationsall havethe name of their character set with_UNICODE added. (Thebuilt-in Unicode
collationsfor UTF8 arethe exceptiontotherule.) They aredefined, along withthe other collations, inthe manifest

filef bi ntl. conf inFirebird'si nt| subdirectory.

Collations may also be registered under a user-chosen name, e.g.:

create collation LAT_UNI

See CREATE COLLATION for the full syntax.

for 1S08859 1 from external

(' 1'SCB859_1_UNI CODE')

14

Chapter 5

DDL statements

Tip

Find a more recent version at Firebird 5.0 L anguage Reference: Data Definition (DDL) Statements

The statements in this chapter are grouped by the type of database object they operate on. For instance,
ALTER DATABASE, CREATE DATABASE and DROP DATABASE are all found under DATABASE; DECLARE
EXTERNAL FUNCTION and ALTER EXTERNAL FUNCTION are under EXTERNAL FUNCTION; etc.

GRANT and REVOKE, which can operate on avariety of object types, are together under Privileges.

COLLATION

Tip

Find amore recent version at Firebird 5.0 Language Reference: COLLATION

CREATE COLLATION

Availablein: DSQL

Added in: 2.1

Description: Adds a collation to the database. The collation must already be present on your system (typically

in alibrary file) and must be properly registered in a. conf fileinthei nt| subdirectory of your Firebird
installation. Y ou may also base the collation on one that is already present in the database.

Syntax:
CREATE COLLATI ON col | nane
FOR char set
[FROM basecol | | FROM EXTERNAL (' extnane')]

[NO PAD | PAD SPACE]

[CASE [| N] SENSI Tl VE]

[ACCENT [I Nl SENSI TI VE]
['<specific-attributes>']

<specific-attributes>
<attri bute>

<attribute> [; <attribute> ...]
attrnane=attrval ue

col I nane = the nane to use for the new collation

char set = a character set present in the database
basecol | = a collation already present in the database
ext nane = the collation nanme used in the .conf file

15

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-collation.html

DDL statements

* If noFROM clauseis present, Firebird will scanthe. conf file(s)inyouri nt | subdirectory for a
collation with the name specified after CREATE COLLATION. That is, omitting the FROM clause
is the same as specifying “FROM EXTERNAL (‘col | nane’)”.

» The single-quoted ext nane is case-sensitive and must be exactly equal to the collation name
inthe. conf file. Thecol | nanme, char set and basecol | parameters are case-insensitive,
unless surrounded by double-quotes.

Soecific attributes: Thetable below liststhe available specific attributes. Not all specific attributes apply to every
collation, even if specifying them doesn't cause an error. Please note that specific attributes are case sensitive.
In the table below, “1 bpc” indicates that an attribute is valid for collations of character sets using 1 byte per
character (so-called narrow character sets). “UNI” stands for “UNICODE collations’.

Table5.1. Specific collation attributes

Name Values Valid for Comment

DISABLE- 0,1 1 bpc Disables compressions (aka contractions).
COMPRESSIONS Compressions cause certain character sequencesto be
sorted as atomic units, e.g. Spanish c+h as a single

character ch.
DISABLE- 0,1 1 bpc Disables expansions. Expansions cause certain
EXPANSIONS characters (e.g. ligatures or umlauted vowels) to be
treated as character sequences and sorted accordingly.
ICU-VERSION default |UNI Specifies the ICU library version to use. Vaid
or Mm values are the ones defined in the applicable

<intl_nodul e> element in intl/fbintl.
conf. Format: either the string literal “def aul t”
or a maor+minor version number like “3.0” (both
unguoted).

LOCALE xx_YY UNI Specifies the collation locale. Requires complete
version of ICU libraries. Format: alocale string like
“du_NL" (unquoted).

MULTI-LEVEL 0,1 1 bpc Uses more than one ordering level.

SPECIALS-FIRST 0,1 1 bpc Orders special characters (spaces, symbols etc.)
before alphanumeric characters.

Examples:
Simplest form, using the name asfound in the . conf file (case-insensitive):
create collation iso8859 1 unicode for iso08859 1

Using a custom name. Notice how the “external” name must now exactly match the name in the
.conf file

create collation lat_uni
for is08859 1
fromexternal ('1S08859 1 UN CCDE)

16

DDL statements

Based on a collation already present in the database:

create collation es_es_nopad_ci
for 1s08859 1
fromes_es
no pad
case insensitive

With a special attribute (case-sensitivel):

create collation es_es_ci_conpr
for is08859 1
fromes_es
case insensitive
' DI SABLE- COMPRESSI ONS=0'

Tip

If you want to add a new character set with its default collation in your database, declare and run the stored
proceduresp_regi ster _character_set (nane, max_bytes_per _character),foundinm sc/
i ntl.sql under your Firebird installation directory. Please note: in order for this to work, the character set
must be present on your system and registered ina. conf fileinthei nt | subdirectory.

DROP COLLATION
Availablein: DSQL
Addedin: 2.1

Description: Removes a collation from the database. Only user-added collations can be removed in thisway.

Syntax:

DROP COLLATI ON name

Tip

If you want to remove an entire character set with all its collationsfrom your database, declare and run the stored
procedure sp_unr egi st er _charact er _set (nane), found in m sc/intl.sql under your Firebird
installation directory.

COMMENT

Tip

Find amore recent version at Firebird 5.0 Language Reference: Comments

Availablein: DSQL

Added in: 2.0

17

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-comment.html

DDL statements

Description: Allows you to enter comments for metadata objects. The comments will be stored in the various
RDB$DESCRIPTION text BLOB fieldsin the system tables, from where client applications can pick them up.

Syntax:
COWENT ON <object> IS {' sometext' | NULL}

DATABASE

| <basic-type> object name

| COLUMN rel ationnane. fiel dnane
| PARAMETER procnane. par ammane

<obj ect >

<basi c-type> CHARACTER SET | COLLATION | DOVAI N | EXCEPTI ON
| EXTERNAL FUNCTION | FILTER | GENERATOR | | NDEX

| PROCEDURE | ROLE | SEQUENCE | TABLE | TRIGGER | VI EW

Note

If you enter an empty comment (* *), it will end up as NULL in the database.

Examples:
conment on database is 'Here''s where we keep all our custoner records.'
comment on table Metals is 'Also for alloys'
conment on columm Metals.IsAlloy is 'O = pure netal, 1 = alloy'

comment on index ix_sales is 'Set inactive during bulk inserts!’

DATABASE

Tip

Find amore recent version at Firebird 5.0 Language Reference: DATABASE

CREATE DATABASE
Availablein: DSQL, ESQL
Syntax (partial):
CREATE { DATABASE | SCHENVA}
[PAGE SI ZE [=] si ze]
[DI FFERENCE FILE ' filepath']

size ::= 4096 | 8192 | 16384

* If the user supplies asize smaller than 4096, it will be silently converted to 4096. Other numbers
not equal to any of the supported sizeswill be silently converted to the next lower supported size.

18

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl.html#fblangref50-ddl-database

DDL statements

16 Kb page size supported, 1 and 2 Kb deprecated
Changedin: 1.0, 2.1

Description: Firebird 1.0 has raised the maximum database page size from 8192 to 16384 bytes. In Firebird 2.1
and up, page sizes 1024 and 2048 are deprecated as inefficient. Firebird will no longer create databases with
these page sizes, but it will connect to existing small-page databases without any problem.

DIFFERENCE FILE parameter
Added in: 2.0

Description: The DIFFERENCE FILE parameter was added in Firebird 2.0, but not documented at the time. For
afull description, see ALTER DATABASE :: ADD DIFFERENCE FILE.

ALTER DATABASE
Availablein: DSQL, ESQL
Description: Alters adatabase's file organisation or togglesits “ safe-to-copy” state.
Syntax:
ALTER { DATABASE | SCHEMA}
[<add_sec_cl ause> [<add_sec_cl ause> ...]]
[ADD DI FFERENCE FI LE 'filepath' | DROP DI FFERENCE Fl LE]
[{BEG N | END} BACKUP]
<add_sec_clause> ::= ADD <sec_file> [<sec_file> ...]
<sec_file> .= FILE 'filepath’
[STARTI NG [AT [PAGE]] pagenun
[LENGTH [=] num [PACGE[S]]

The DIFFERENCE FILE and BACKUP clauses, added in Firebird 2.0, are not available in ESQL.

BEGIN BACKUP
Availablein: DSQL
Addedin: 2.0

Description: Freezes the main database file so that it can be backed up safely by filesystem means, even while
users are connected and perform operations on the data. Any mutations to the database will be written to a
separate file, the delta file. Contrary to what the syntax suggests, this statement does not initiate the backup
itself; it merely creates the conditions.

Example:

al ter dat abase begi n backup

END BACKUP

Availablein: DSQL

19

DDL statements

Added in: 2.0

Description: Merges the delta file back into the main database file and restores the normal state of operation,
thus closing the time window during which safe backups could be made viathe filesystem. (Safe backups with
gbak are till possible.)

Example:

al ter database end backup

Tip

Instead of BEGIN and END BACKUP, consider using Firebird's nbackup tool: it can freeze and unfreeze the
main database file as well as make full and incremental backups. A manual for nbackup is available via the
Firebird Documentation Index.

ADD DIFFERENCE FILE
Availablein: DSQL
Addedin: 2.0

Description: Presets path and name of the delta file to which mutations are written when the database goesinto
“copy-safe” mode after an ALTER DATABASE BEGIN BACKUP command.

Example:
alter database add difference file ' C \Firebird\ Dat abases\ Fruitbase. delta’
Notes:

» This statement doesn't really add any file. It just overrides the default path and name for the delta file that
will be created if and when the database enters copy-safe mode.

» If you provide a relative path or a bare filename here, it will be appended to the current directory as seen
from the server. On Windows, thisis often the system directory.

 If you want to change an existing setting, DROP the old one first and then ADD the new one.

» When not overridden, the delta file gets the same path and filename as the database itself, but with the
extenson. del ta

DROP DIFFERENCE FILE
Availablein: DSQL
Added in: 2.0

Description: Removes the delta file path and name that were previously set with ALTER DATABASE ADD
DIFFERENCE FILE. This statement doesn't really drop afile. It only erases the preset path and/or filename that
would otherwise have been used the next time the database went into copy-safe mode, and reverts to the default
behaviour.

Example:

al ter database drop difference file

20

http://www.firebirdsql.org/en/documentation/

DDL statements

DOMAIN

Tip

Find amore recent version at Firebird 5.0 Language Reference: DOMAIN

CREATE DOMAIN

Availablein: DSQL, ESQL

Context variables as defaults
Changedin: IB

Description: Any context variable that is assignment-compatible to the new domain's datatype can be used as a
default. This was already the case in InterBase 6, but the Language Reference only mentioned USER.

Example:
create domai n DDate as
dat e

default current_date
not null

ALTER DOMAIN

Availablein: DSQL, ESQL

Warning

If adomain'sdefinition ischanged, existing PSQL code using that domain may becomeinvalid. For information
on how to detect this, please read the note The RDB$VALID_BLR field, near the end of this document.

Rename domain
Addedin: IB

Description: Renaming of adomain is possible with the TO clause. This feature was introduced in InterBase 6,
but left out of the Language Reference.

Example:
alter domain posint to plusint

e The TO clause can be combined with other clauses and need not come first in that case.

SET DEFAULT to any context variable

Changed in: 1B

21

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-domn.html

DDL statements

Description: Any context variable that is assignment-compatible to the domain's datatype can be used as a
default. Thiswas aready the case in InterBase 6, but the Language Reference only mentioned USER.

Example:

al ter donain DDate
set default current_date

EXCEPTION

Tip

Find amore recent version at Firebird 5.0 Language Reference: EXCEPTION

CREATE EXCEPTION

Availablein: DSQL, ESQL

Message length increased
Changedin: 2.0

Description: In Firebird 2.0 and higher, the maximum length of the exception message has been raised from
78 to 1021.

Example:

create excepti on Ex_TooManyManagers
"Too many nmanagers: An attenpt was made to create nore managers than the
maxi mum defined in the Linmits table. If you really need to create nore
managers than you have now, raise the limt first. However, please consult
your departnent''s manager before doing so. Otherw se, your decision may
be overturned later and the additional nanager(s) renoved.'

Note

The maximum exception message length depends on a certain system table field. Therefore, pre-2.0 databases
need to be backed up and restored under Firebird 2.x before they can store exception messages of up to 1021
bytes.

CREATE OR ALTER EXCEPTION
Availablein: DSQL
Addedin: 2.0

Description: If the exception does not yet exist, it is created just as if CREATE EXCEPTION were used. If it
aready exists, it is altered. Existing dependencies are preserved.

Syntax: Exactly the same as for CREATE EXCEPTION.

22

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-exception.html

DDL statements

RECREATE EXCEPTION
Availablein: DSQL
Added in: 2.0

Description: Creates or recreates an exception. If an exception with the same name already exists, RECREATE
EXCEPTION will try to drop it and create a new exception. Thiswilll fail if there are existing dependencies on

the exception.

Syntax: Exactly the same as CREATE EXCEPTION.

Note

message until you try to commit your transaction.

If you use RECREATE EXCEPTION on an exception that has dependent objects, you may not get an error

EXTERNAL FUNCTION

Tip

Find a more recent version at Firebird 5.0 Language Reference: EXTERNAL FUNCTION

DECLARE EXTERNAL FUNCTION

Availablein: DSQL, ESQL

Description: This statement makes an external function (UDF) available in the database.

Syntax:

DECLARE EXTERNAL FUNCTI ON | ocal nane

[<arg_type_decl> [, <arg_type_decl> ...]]

RETURNS {<return_type_decl > | PARAMETER 1-based_pos} [FREE_IT]

ENTRY_PO NT ' function_nanme' MODULE _NAME 'l brary_nane'
<arg_type_decl > sqgl type [BY DESCRI PTOR] | CSTRI NE | engt h)
<return_type_decl >

sqgl type [BY {DESCRI PTOR| VALUE}] | CSTRI NE | engt h)

Restrictions

* TheBY DESCRIPTOR passing method is not supported in ESQL.

You may choose | ocal nane fregly; this is the name by which the function will be known to your database.
You may also vary thel engt h argument of CSTRING parameters (more about CSTRINGS in the note near the

end of the book).

BY DESCRIPTOR parameter passing

Availablein: DSQL

23

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-extfunc.html

DDL statements

Added in: 1.0

Description: Firebird introduces the possibility to pass parameters BY DESCRIPTOR; this mechanism facilitates
the processing of NULLs in ameaningful way. Notice that this only works if the person who wrote the function
has implemented it. Simply adding “BY DESCRIPTOR” to an existing declaration does not make it work —on
the contrary! Always use the declaration block provided by the function designer.

RETURNS PARAMETER n

Availablein: DSQL, ESQL

Addedin: IB 6

Description: Inorder toreturn aBLOB, an extrainput parameter must be declared and a“RETURNSPARAMETER
n” clauseadded —n being the position of said parameter. Thisclause dates back to InterBase 6 beta, but somehow
didn't make it into the Language Reference (it is documented in the Developer's Guide though).

ALTER EXTERNAL FUNCTION

Availablein: DSQL

Added in: 2.0

Description: Altersan external function's module name and/or entry point. Existing dependencies are preserved.
Syntax:

ALTER EXTERNAL FUNCTI ON f uncnamne
<modi fi cation> [<nodification>]

<nodi fication> ::= ENTRY_PO NT ' new entry-point'
| MODULE _NAME ' new nodul e- nane'

Example:

alter external function Phi nodul e_name ' NewUdfLi b’

FILTER

Tip

Find amore recent version at Firebird 5.0 Language Reference: FILTER

DECLARE FILTER
Availablein: DSQL, ESQL
Changed in: 2.0

Description: Makes aBLOB filter available to the database.

24

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-filter.html

DDL statements

Syntax:

DECLARE FILTER filternane
| NPUT_TYPE <sub_type> OQUTPUT_TYPE <sub_t ype>
ENTRY_PO NT ' function_name’ MODULE _NAME 'Iibrary_nange'

<sub_type> = nunber | <mmenonic>

<menonic> ::= binary | text | blr | acl | ranges | summary | format
| transaction_description | external file_description
| user_defined

* InFirebird 2 and up, no two BLOB filters in a database may have the same combination of input
and output type. Declaring afilter with an aready existing input-output type combination will fail.
Restoring pre-2.0 databases that contain such “duplicate” filters will aso fail.

» The possibility to indicate the BLOB types with their mnemonics instead of numbers was added
in Firebird 2. The bi nar y mnemonic for subtype O was also added in Firebird 2. The predefined
MNemonics are case-insensitive.

Example:

declare filter Funnel
i nput _type blr output_type text
entry _point 'blr2asc' nodule _nane 'nyfilterlib’

User-defined mnemonics. If you want to define mnemonics for your own BLOB subtypes, you can add them
to the RDBS$TY PES system table as shown below. Once committed, the mnemonics can be used in subsegquent
filter declarations.

insert into rdb$types (rdb$field name, rdb$type, rdb$type name)
val ues (' RDB$FI ELD SUB TYPE , -33, "MD")

Thevauefor r db$f i el d_nane must always be 'RDBSFIELD_SUB_TYPE'. If you define your mnemonicsin
all-uppercase, you can use them case-insensitively and unquoted in your filter declarations.

INDEX

Tip

Find a more recent version at Firebird 5.0 Language Reference: INDEX

CREATE INDEX
Availablein: DSQL, ESQL

Description: Creates an index on atable for faster searching, sorting and/or grouping.

Syntax:
CREATE [UNI QUE] [ASC[{ ENDI NG | [DESC[ENDI NG] | NDEX i ndexnane
ON t abl enane
{ (<col> [, <col>...]) | COWPUTED BY (expression) }

25

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-index.html

DDL statements

<col> ::= a colum not of type ARRAY, BLOB or COVPUTED BY

UNIQUE indices now allow NULLs
Changedin: 1.5

Description: In compliance with the SQL-99 standard, NULLs — even multiple — are now allowed in columns
that have a UNIQUE index defined on them. For a full discussion, see CREATE TABLE :: UNIQUE constraints
now allow NULLs. As far as NULLs are concerned, the rules for unique indices are exactly the same as those
for unique keys.

Indexing on expressions
Added in: 2.0

Description: Instead of one or more columns, you can now also specify asingle COMPUTED BY expression in
an index definition. Expression indices will be used in appropriate queries, provided that the expression in the
WHERE, ORDER BY or GROUPBY clause exactly matchesthe expression in theindex definition. Multi-segment
expression indices are not supported, but the expression itself may involve multiple columns.

Examples:

create index ix_upname on persons conputed by (upper(nane));
commt;

-- the following queries will use ix_upnane:

select * from persons order by upper(nane);

select * from persons where upper(name) starting with ' VAN ;
del ete from persons where upper (nane) ' BROMN ;

del ete from persons where upper (nane) ' BROAWN and age > 65;

create descending index ix_events_yt

on MyEvents

conputed by (extract(year from StartDate) || Town);
comit;

-- the following query will use ix_events_yt:

select * from WEvents
order by extract(year from StartDate) || Town desc;

Maximum index key length increased
Changedin: 2.0

Description: The maximum length of index keys, which used to be fixed at 252 bytes, is now equal to 1/4 of
the page size, i.e. varying from 256 to 4096. The maximum indexable string length in bytes is 9 less than the
key length. The table below shows the indexable string lengths in characters for the various page sizes and
character sets.

Table5.2. Maximum indexable (VAR)CHAR length

Page size Maximum indexable string length per char set type
1 byte/char 2 bytes/char 3 bytes/char 4 bytes/char
1024 247 123 82 61

26

DDL statements

Page size Maximum indexable string length per charset type

1 byte/char 2 bytes/char 3 bytes/char 4 bytes/char
2048 503 251 167 125
4096 1015 507 338 253
8192 2039 1019 679 509
16384 4087 2043 1362 1021

Maximum number of indices per table increased

Changedin: 1.0.3,1.5, 2.0

Description: The maximum number of 65 indices per table has been removed in Firebird 1.0.3, reintroduced at
the higher level of 257 in Firebird 1.5, and removed once again in Firebird 2.0.

Although there is no longer a“hard” ceiling, the number of indices creatable in practice is till limited by the
database page size and the number of columns per index, as shown in the table below.

Table5.3. Max. indices per table, Firebird 2.0

Page size Number of indices depending on column count

1 col 2 cols 3cols
1024 50 35 27
2048 101 72 56
4096 203 145 113
8192 408 291 227
16384 818 584 454

Please be aware that under normal circumstances, even 50 indices is way too many and will drastically reduce
mutation speeds. The maximum was removed to accommodate data-warehousing applications and the like,
which perform lots of bulk operations with the indices temporarily inactivated.

For afull table aso including Firebird versions 1.0-1.5, see the Notes at the end of the book.

Privileges: GRANT and REVOKE

REVOKE ADMIN OPTION

Tip

Find amore recent version at Firebird 5.0 L anguage Reference: Statements for Revoking Privileges

27

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-security-revoking.html

DDL statements

Availablein: DSQL
Addedin: 2.0

Description: Revokes a previously granted admin option (the right to pass on a granted role to others) from the
grantee, without revoking theroleitself. Multiple roles and/or multiple grantees can be handled in one statement.

Syntax:
REVOKE ADM N OPTI ON FOR <rol e-1ist> FROM <grantee-I|ist>
<role-list>

<grantee-|list>
<gr ant ee>

role [, role ...]
[USER] <grantee> [, [USER] <grantee> ...]
usernane | PUBLIC

Example:
revoke admin option for manager from john, paul, george, ringo

If auser has received the admin option from severa grantors, each of those grantors must revoke it or the user
will still be able to grant the role(s) in question to others.

PROCEDURE

Tip

Find amore recent version at Firebird 5.0 Language Reference: PROCEDURE

A stored procedure (SP) is a code module that can be called by the client, by another stored procedure, an
executable block or atrigger. Stored procedures, executable blocks and triggers are written in Procedural SQL

(PSQL). Most SQL statements are also available in PSQL, sometimes with restrictions or extensions. Notable
exceptions are DDL and transaction control statements.

Stored procedures can accept and return multiple parameters.

CREATE PROCEDURE
Availablein: DSQL, ESQL

Description: Creates a stored procedure.

Syntax:
CREATE PROCEDURE procnane
[(<inparanme [, <inparanr ...])]
[RETURNS (<outparan®> [, <outparam> ...])]

AS

[<decl arati ons>]
BEG N

[<PSQL st at ement s>]
END

<i npar ane ;.= <paramdecl > [{= | DEFAULT} val ue]

28

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-procedure.html

DDL statements

<out par anp
<par am decl >
<t ype>

<decl ar ati ons>

/* If sql _datatype is a string type,

<par am decl >

paramane <type> [NOT NULL] [COLLATE coll ation]
sql _datatype | [TYPE OF] donain

See PSQL:: DECLARE for the exact syntax

it may include a character set */

Domains supported in parameter and variable declarations

Changedin: 2.1

Description: Firebird 2.1 and up support the use of domains instead of SQL datatypes when declaring input/
output parameters and local variables. With the “TYPE OF” modifier, only the domain's type is used — not its
NOT NULL setting, CHECK constraint and/or default value. If the domain is of atext type, its character set and

collation are always preserved.

Example:

create domai n bool 3

smal | i nt

check (value is null

or value in (0,1));

create domai n bi gposnum

bi gi nt

check (value >= 0);

/* Determines if Ais anultiple of B: */

set term#;

create procedure isnultiple (a bigposnum b bigposnunj
returns (res bool 3)

as

declare ratio type of bigposnum --
decl are renmi nder type of bigposnum --

begi n
if (ais null or

bis null) then res =

ratio is a bigint
SO i s remainder

nul | ;

else if (b =0) then

begi n
if (a=

end

el se

begi n
ratio =
remai nder =

al b;

end
end#
set term ;#

0) then res = 1;

a_
if (remainder =

else res = 0;

-- integer division!
b*rati o;

0) then res = 1; else res = 0;

Warning

If adomain'sdefinitionischanged, existing PSQL code using that domain may becomeinvalid. For information
on how to detect this, please read the note The RDB$VALID_BLR field, near the end of this document.

COLLATE in variable and parameter declarations

Changedin: 2.1

29

DDL statements

Description: Firebird 2.1 and up allow COLLATE clauses in declarations of input/output parameters and local
variables.

Example:

create procedure Spani shToDutch
(es_1 varchar (20) character set is08859 1 collate es_es,
es_2 ny_char_domain collate es_es)
returns
(nl _1 varchar(20) character set is08859 1 collate du_nl,
nl_2 ny_char_donain collate du_nl)
as
decl are s_tenp varchar (100) character set utf8 collate unicode;
begi n

ena. '
NOT NULL in variable and parameter declarations

Changedin: 2.1

Description: Firebird 2.1 and up alow NOT NULL constraints in declarations of input/output parameters and
local variables.

Example:
create procedure Regi sterOder
(order_no int not null, description varchar(200) not null)
returns
(ticket_no int not null)
as
declare tenp int not null;
begi n
end

Default argument values
Changed in: 2.0

Description: It is now possible to provide default values for stored procedure arguments, alowing the caller to
omit one or more items (possibly even al) from the end of the argument list.

Syntax:

CREATE PROCEDURE procnane (<inparan® [, <inparam> ...])

<inparank .= paramane datatype [{= | DEFAULT} val ue]

Important: If you provide a default value for a parameter, you must do the same for any and all
parameters following it.

30

DDL statements

BEGIN ... END blocks may be empty
Changedin: 1.5

Description: BEGIN ... END blocks may be empty in Firebird 1.5 and up, allowing you to write stub code without
having to resort to dummy statements.

Example:
create procedure grab_ints (a integer, b integer)
as

begi n
end

ALTER PROCEDURE

Availablein: DSQL, ESQL

Default argument values
Added in: 2.0

Description: You can now provide default values for stored procedure arguments, alowing the caller to omit
one or more items from the end of the argument list. See CREATE PROCEDURE for syntax and details.

Example:

alter procedure TestProc
(aint, bint default 1007, s varchar(12) ="'-")

COLLATE in variable and parameter declarations
Changedin: 2.1

Description: Firebird 2.1 and up allow COLLATE clauses in declarations of input/output parameters and local
variables. See CREATE PROCEDURE for syntax and details.

Domains supported in parameter and variable declarations
Changedin: 2.1

Description: Firebird 2.1 and up support the use of domains instead of SQL datatypes when declaring input/
output parameters and local variables. See CREATE PROCEDURE for syntax and details.

NOT NULL in variable and parameter declarations
Changedin: 2.1

Description: Firebird 2.1 and up alow NOT NULL constraints in declarations of input/output parameters and
local variables. See CREATE PROCEDURE for syntax and details.

31

DDL statements

Restriction on altering used procedures
Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

CREATE OR ALTER PROCEDURE
Availablein: DSQL
Addedin: 1.5

Description: If the procedure does not yet exist, it is created just as if CREATE PROCEDURE were used. If it
aready exists, it is altered and recompiled. Existing permissions and dependencies are preserved.

Syntax: Exactly the same as for CREATE PROCEDURE.

DROP PROCEDURE

Availablein: DSQL, ESQL

Restriction on dropping used procedures
Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

RECREATE PROCEDURE
Availablein: DSQL
Added in: 1.0

Description: Creates or recreates a stored procedure. If a procedure with the same name already exists,
RECREATE PROCEDURE will try to drop it and create a new procedure. RECREATE PROCEDURE will fail if
the existing SPisin use.

Syntax: Exactly the same as CREATE PROCEDURE.

Restriction on recreating used procedures
Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has

32

DDL statements

been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

SEQUENCE or GENERATOR

Tip

Find amore recent version at Firebird 5.0 Language Reference: SEQUENCE (GENERATOR)

CREATE SEQUENCE
Availablein: DSQL
Added in: 2.0
Description: Creates a new sequence or generator. SEQUENCE is the SQL-compliant term for what InterBase
and Firebird have always called a generator. CREATE SEQUENCE is fully equivalent to CREATE GENERATOR
and is the recommended syntax from Firebird 2.0 onward.
Syntax:
CREATE SEQUENCE sequence- nhame
Example:

create sequence seqtest

Because internally sequences and generators are the same thing, you can freely mix the generator and sequence
syntaxes, even when operating on the same object. Thisis not recommended however.

Sequences (or generators) are always stored as 64-bit integer val ues, regardl ess of the database dial ect. However:

» If theclient dialect is set to 1, the server passes generator values as truncated 32-bit values to the client.

 If generator valuesarefed into a 32-bit field or variable, all goeswell until the actual value exceeds the 32-bit
range. At that point, adialect 3 database will raise an error whereas a dialect 1 database will silently truncate
the value (which could also lead to an error, e.g. if the receiving field has a unique key defined on it).

See also: ALTER SEQUENCE, NEXT VALUE FOR, DROP SEQUENCE

CREATE GENERATOR
Availablein: DSQL, ESQL

Better alternative: CREATE SEQUENCE

CREATE SEQUENCE preferred

Changedin: 2.0

33

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-sequence.html

DDL statements

Description: From Firebird 2.0 onward, the SQL-compliant CREATE SEQUENCE syntax is preferred.

Maximum number of generators significantly raised
Changedin: 1.0
Description: InterBase reserved only one database page for generators, limiting the total number to 123 (on 1K

pages) — 1019 (on 8K pages). Firebird has done away with that limit; you can now create more than 32,000
generators per database.

ALTER SEQUENCE

Availablein: DSQL

Added in: 2.0

Description: (Re)initializes a sequence or generator to the given value. SEQUENCE is the SQL-compliant term
for what InterBase and Firebird have aways caled agenerator. “ALTER SEQUENCE ... RESTART WITH" isfully
equivalent to “SET GENERATOR ... TO” and is the recommended syntax from Firebird 2.0 onward.

Syntax:

ALTER SEQUENCE sequence-nanme RESTART W TH <newal >

<newal > ::= A signed 64-bit integer val ue.
Example:

alter sequence seqtest restart with 0

Warning

Careless use of ALTER SEQUENCE is a mighty fine way of screwing up your database! Under normal
circumstances you should only use it right after CREATE SEQUENCE, to set theinitial value.

See also: CREATE SEQUENCE

SET GENERATOR
Availablein: DSQL, ESQL
Better alternative: ALTER SEQUENCE

Description: (Re)initializes a generator or sequence to the given value. From Firebird 2 onward, the SQL-
compliant ALTER SEQUENCE syntax is preferred.

Syntax:

SET GENERATOR generat or-nane TO <new- val ue>

<newvalue> ::= A 64-bit integer.

DDL statements

Warning

Once a generator or sequence is up and running, you should not tamper with its value (other than retrieving
next values with GEN_ID or NEXT VALUE FOR) unless you know exactly what you are doing.

DROP SEQUENCE
Availablein: DSQL
Added in: 2.0
Description: Removes asequence or generator from the database. Its (very small) storage space will be freed for
re-use after abackup-restore cycle. SEQUENCE isthe SQL-compliant term for what InterBase and Firebird have
always called agenerator. DROP SEQUENCE isfully equivalent to DROP GENERATOR and is the recommended
syntax from Firebird 2.0 onward.
Syntax:

DROP SEQUENCE sequence- nane
Example:

drop sequence seqtest

See also: CREATE SEQUENCE

DROP GENERATOR
Availablein: DSQL

Addedin: 1.0

Better alternative: DROP SEQUENCE

Description: Removes a generator or sequence from the database. Its (very small) storage space will be freed
for re-use after a backup-restore cycle.

Syntax:
DROP GENERATCOR gener at or - nane

From Firebird 2.0 onward, the SQL -compliant DROP SEQUENCE syntax is preferred.

TABLE

Tip

Find amore recent version at Firebird 5.0 Language Reference: TABLE

35

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-table.html

DDL statements

CREATE TABLE

Availablein: DSQL, ESQL

Global Temporary Tables (GTTs)
Addedin: 2.1

Description: Global temporary tables have persistent metadata, but their contents are transaction-bound (the
default) or connection-bound. Every transaction or connection has its own private instance of a GTT, isolated
from all the others. Instances are only created if and whenthe GTT isreferenced, and destroyed upon transaction
end or disconnection. To modify or remove a GTT's metadata, ALTER TABLE and DROP TABLE can be used.

Syntax:

CREATE GLOBAL TEMPORARY TABLE nare
(colum_def [, columm_def | table_constraint ...])
[ON COW T {DELETE | PRESERVE} ROW5]

e ON COMMIT DELETE ROWS creates a transaction-level GTT (the default), ON COMMIT
PRESERVE ROWS a connection-level GTT.

* AN EXTERNAL [FILE] clauseis not allowed on a global temporary table.

Restrictions: GTTs can be “dressed up” with all the features and paraphernalia of ordinary tables (keys,
references, indices, triggers...) but there are afew restrictions:

» GTTsand regular tables cannot reference one another.

* A connection-bound (“PRESERVE ROWS’) GTT cannot reference a transaction-bound (“DELETE ROWS”)
GTT.

» Domain constraints cannot reference any GTT.

» Thedestruction of aGTT instance at the end of its life cycle does not cause any before/after delete triggers
to fire.

Example:

create global tenporary table MyConnGIT (
idint not null primary key,
txt varchar (32),
ts tinestanp default current_tinestanp

)

on conmit preserve rows;
comit;

create global tenporary table MyTXGIT (
idint not null primary key,
parent _id int not null references MyConnGIT(id),
txt varchar (32),
ts tinestanp default current_tinestanp

36

DDL statements

);
conmi t;
Tip
In an existing database, it's not always easy to tell aregular tablefromaGTT, or atransaction-level GTT from
aconnection-level GTT. Use this query to find out atable's type:
sel ect t.rdb$type_nane
fromrdb$rel ations r
join rdb$types t on r.rdb$relation_type = t.rdb$type
where t.rdb$fiel d_name = ' RDBSRELATI ON_TYPE'
and r.rdb$rel ati on_nane = ' TABLENAME
Or, for an overview of all your relations:
sel ect r.rdb$rel ati on_nane, t.rdb$type_nane
fromrdb$rel ations r
join rdb$types t on r.rdb$rel ati on_type = t.rdb$type
where t.rdb$fiel d_name = ' RDBSRELATI ON_TYPE'
and coal esce (r.rdb$systemflag, 0) =0
GENERATED ALWAYS AS
Added in: 2.1

Description: Instead of COMPUTED [BY], you may also use the SQL-2003-compliant equivalent GENERATED
ALWAYSAS for computed fields.

Syntax:
col nane [col type] GENERATED ALWAYS AS (expression)
Example:
create table Persons (
idint primary key,
firstnane varchar(24) not null,
m ddl enane var char (24),
| ast nane varchar (24) not null,
ful | name varchar(74) generated al ways as
(firstname || coalesce(' ' || middlename, "") || ' " || lastnane),
street varchar(32),

)

Note: GENERATED ALWAY S AS s not currently supported in index definitions.

CHECK accepts NULL outcome

Changedin: 2.0

37

DDL statements

Description: If a CHECK constraint resolves to NULL, Firebird versions before 2.0 reject the input. Following
the SQL standard to the letter, Firebird 2.0 and above let NULLSs pass and only consider the check failed if the
outcomeisf al se.

Example:
Checks like these:
check (val ue > 10000)
check (Town like 'Anst %)
check (upper(value) in ("A, 'B, "X))
check (M ni mum <= Maxi mum

all fail in pre-2.0 Firebird versionsif the value to be checked isNULL. In 2.0 and above they succeed.

Warning

This change may cause existing databases to behave differently when migrated to Firebird 2.0+. Carefully
examine your CREATE/ALTER TABLE statements and add “and XXX is not nul|l” predicates to your
CHECKSsif they should continue to reject NULL input.

Context variables as column defaults
Changedin: IB

Description: Any context variablethat isassignment-compatibl e to the column datatype can be used as adefault.
Thiswas aready the case in InterBase 6, but the Language Reference only mentioned USER.

Example:
create table MyData (

idint not null primry key,
record_created tinestanp default current_tinestanp,

FOREIGN KEY without target column references PK
Changed in: IB

Description: If you create a foreign key without specifying atarget column, it will reference the primary key
of the target table. Thiswas already the casein InterBase 6, but the B Language Reference wrongly states that
in such cases, the engine scans the target table for a column with the same name as the referencing column.

Example:

create table eik (
aint not null primry key,
b int not null unique

)

create table beuk (
b int references eik

38

DDL statements

)

-- beuk.b references eik.a, not eik.b !

FOREIGN KEY creation no longer requires exclusive access
Changedin: 2.0

Description: In Firebird 2.0 and above, creating a foreign key constraint no longer requires exclusive access
to the database.

UNIQUE constraints now allow NULLS
Changedin: 1.5

Description: In compliance with the SQL-99 standard, NULLs — even multiple — are now alowed in columns
with a UNIQUE constraint. It is therefore possible to define a UNIQUE key on a column that has no NOT NULL
constraint.

For UNIQUE keys that span multiple columns, the logic is alittle complicated:
* Multiplerows having all the UK columns NULL are allowed.
» Multiple rows having a different subset of UK colums NULL are allowed.

* Multiple rows having the same subset of UK columns NULL and the rest filled with regular values and those
regular values differ in at least one column, are allowed.

» Multiple rows having the same subset of UK columns NULL and the rest filled with regular values and those
regular values are the same in every column, are forbidden.

Oneway of summarizing thisisasfollows: In principle, all NULLs are considered distinct. But if two rows have
exactly the same subset of UK columns filled with non-NULL values, the NULL columns are ignored and the
non-NULL columns are decisive, just asif they congtituted the entire unique key.

USING INDEX subclause
Availablein: DSQL
Addedin: 1.5

Description: A USING INDEX subclause can be placed at the end of aprimary, unique or foreign key definition.
Its purposeisto

» provide a user-defined name for the automatically created index that enforces the constraint, and
» optionaly define the index to be ascending or descending (the default being ascending).

Without USING INDEX, indices enforcing named constraints are named after the constraint (thisis new behaviour
in Firebird 1.5) and indices for unnamed constraints get names like RDB$FOREIGN13 or something equally
romantic.

Note

You must always provide a new name for the index. It is not possible to use pre-existing indices to enforce
constraints.

39

DDL statements

USING INDEX can be applied at field level, at table level, and (in ALTER TABLE) with ADD CONSTRAINT. It
works with named as well as unnamed key constraints. It does not work with CHECK constraints, as these don't
have their own enforcing index.

Syntax:

[CONSTRAI NT const rai nt - nane]
<constrai nt-type> <constraint-definition>
[USI NG [ASC] ENDI NG | DESC ENDI NG] | NDEX i ndex_nane]

Examples:
Thefirst example creates a primary key constraint PK_CUST using an index named IX_CUSTNO:

create table custoners (
custno int not null constraint pk_cust primary key using index ix_custno,

This, however:

create table custoners (
custno int not null primary key using index ix_custno,

...will giveyou aPK constraint called INTEG_7 or something similar, and an index IX_CUSTNO.
Some more examples:

create table people (
idint not null,
ni cknane varchar(12) not null,
country char (4),

constraint pk_people primary key (id),
constrai nt uk_ni cknane uni que (ni ckname) using index iXx_nick

)

alter table people
add constraint fk_people_country
foreign key (country) references countries(code)
usi ng desc i ndex ix_people_country

I mportant

If you define a descending constraint-enforcing index on a primary or unique key, be sure to make any foreign
keys referencing it descending as well.

ALTER TABLE

Availablein: DSQL, ESQL

ADD column: Context variables as defaults

Changed in: IB

40

DDL statements

Description: Any context variable that is assignment-compatible to the new column's datatype can be used as a
default. Thiswas aready the case in InterBase 6, but the Language Reference only mentioned USER.

Example:

alter table MyData
add MyDay date default current_date

ALTER COLUMN: DROP DEFAULT
Availablein: DSQL
Addedin: 2.0

Description: Firebird 2 adds the possibility to drop a column-level default. Once the default is dropped, there
will either be no default in place or — if the column's type is a DOMAIN with a default — the domain default
will resurface.

Syntax:

ALTER TABLE t abl enane ALTER [COLUWMN] col nane DROP DEFAULT
Example:

alter table Trees alter Grth drop default

Anerrorisraised if you use DROP DEFAULT on acolumn that doesn't have a default or whose effective default
is domain-based.

ALTER COLUMN: SET DEFAULT
Availablein: DSQL
Added in: 2.0

Description: Firebird 2 adds the possibility to set/alter defaults on existing columns. If the column aready had
adefault, the new default will replace it. Column-level defaults always override domain-level defaults.

Syntax:
ALTER TABLE t abl enane ALTER [COLUMN] col nane SET DEFAULT <defaul t >
<default> ::= literal-value | context-variable | NULL

Example:

alter table Custoners alter EnteredBy set default current _user

Tip

If you want to switch off a domain-based default on a column, set the column default to NULL.

ALTER COLUMN: POSITION now 1-based

Changedin: 1.0

41

DDL statements

Description: When changing a column's position, the engine now interprets the new position as 1-based. This
isin accordance with the SQL standard and the InterBase documentation, but in practice InterBase interpreted
the position as O-based.

Syntax:
ALTER TABLE t abl enane ALTER [COLUWN] col nane PCSI TI ON <newpos>
<newpos> ::= an integer between 1 and the nunber of col ums
Example:

alter table Stock alter Quantity position 3

Note

Don't confuse this with the POSITION in CREATE/ALTER TRIGGER. Trigger positions are and will remain O-
based.

CHECK accepts NULL outcome
Changedin: 2.0

Description: If a CHECK constraint resolves to NULL, Firebird versions before 2.0 reject the input. Following
the SQL standard to the letter, Firebird 2.0 and above let NULLSs pass and only consider the check failed if the
outcomeisf al se. For moreinformation see under CREATE TABLE.

FOREIGN KEY without target column references PK
Changed in: 1B

Description: If you creste aforeign key without specifying a target column, it will reference the primary key
of the target table. Thiswas already the casein InterBase 6, but the IB Language Reference wrongly states that
in such cases, the engine scans the target table for a column with the same name as the referencing column.

Example:

create table eik (
aint not null primry key,
b int not null unique

)1
create table beuk (
b int
)¢
alter table beuk

add constraint fk_beuk

foreign key (b) references eik;

-- beuk.b now references eik.a, not eik.b !

FOREIGN KEY creation no longer requires exclusive access

Changedin: 2.0

42

DDL statements

Description: In Firebird 2.0 and above, adding a foreign key constraint no longer requires exclusive access to
the database.

GENERATED ALWAYS AS
Added in: 2.1

Description: Instead of COMPUTED [BY], you may also use the SQL-2003-compliant equivalent GENERATED
ALWAYSAS for computed fields.

Syntax:
col nane [col type] GENERATED ALWAYS AS (expression)
Example:

alter table Friends
add ful l nane varchar (74)
generated al ways as
(firstname || coalesce(' ' || middlename, "') || ' ' || lastnane)

UNIQUE constraints now allow NULLS
Changedin: 1.5

Description: In compliance with the SQL-99 standard, NULLs — even multiple — are now allowed in columns
with a UNIQUE constraint. For afull discussion, see CREATE TABLE :: UNIQUE constraints now allow NULLS.

USING INDEX subclause
Availablein: DSQL
Added in: 1.5

Description: A USING INDEX subclause can be placed at the end of aprimary, unique or foreign key definition.
Its purposeisto

» provide a user-defined name for the automatically created index that enforces the constraint, and
» optionaly define the index to be ascending or descending (the default being ascending).

Syntax:

[ADD] [CONSTRAI NT constrai nt - nane]
<constrai nt-type> <constraint-definition>
[USI NG [ASC[ENDI NG | DESC[ENDI NG] | NDEX i ndex_nane]

For afull discussion and examples, see CREATE TABLE :: USNG INDEX subclause.

RECREATE TABLE

Availablein: DSQL

43

DDL statements

Added in: 1.0

Description: Creates or recreates atable. If atable with the same name already exists, RECREATE TABLE will
try to drop it (destroying all its datain the process!) and create a new table. RECREATE TABLE will fail if the
existing tableisin use.

Syntax: Exactly the same as CREATE TABLE.

TRIGGER

Tip

Find amore recent version at Firebird 5.0 Language Reference: TRIGGER

CREATE TRIGGER
Availablein: DSQL, ESQL

Description: Createsatrigger, ablock of PSQL codethat is executed automatically upon certain database events
or mutations to a table or view.

Syntax:
CREATE TRI GGER nane

{<relation_trigger_|egacy>
| <relation_trigger_sql 2003>

| <dat abase_trigger> }
AS
[<decl ar ati ons>]
BEG N
[<st at enent s>]
END
<rel ation_trigger_| egacy> ::= FOR {tabl enane | viewnane}
[ACTI VE | | NACTI VE]
{BEFORE | AFTER} <mutation_list>
[POSI TI ON nunber]
<relation_trigger_sql2003> ::= [ACTIVE | | NACTI VE]
{BEFORE | AFTER} <mutation_list>
[POSI TI ON nunber]
ON {tabl enane | vi ewnane}
<dat abase_tri gger> ::= [ACTIVE | | NACTI VE]

ON db_event
[PCSI TI ON nunber]

<mutation_list>

mutation [OR mutation [OR nutation]]
mut ati on

| NSERT | UPDATE | DELETE

db_event

CONNECT | DI SCONNECT | TRANSACTI ON START
| TRANSACTI ON COMM T | TRANSACTI ON ROLLBACK

44

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-trigger.html

DDL statements

nunber ::= 0..32767 (default

is 0)

<decl ar ati ons> ::= See PSQL::DECLARE for the exact syntax

» “Legacy” and “sgl2003” relation triggers are exactly the same. The only thing that differsisthe

creation syntax.

» Triggers with lower position numbers fire first. Position numbers need not be unique, but if two
or more triggers have the same position, the firing order between them is undefined.

» When defining relation triggers, each mutation type (INSERT, UPDATE or DELETE) may occur

at most once in the mutation list.

SQL-2003-compliant syntax for relation triggers

Added in: 2.1

Example:

create trigger biu_books
active before insert or update position 3
on books

as

begi n
if (new.idis null)

then new.id = next value for gen_bookids;

end

Database triggers

Added in: 2.1

Syntax:

CREATE TRI GGER nane

[ACTI VE | | NACTI VE]
ON db_event
[POSI TI ON nunber]
AS

[<decl ar ati ons>]
BEG N

[<st at enent s>]
END

Description: Since Firebird 2.1, an aternative, SQL-2003-compliant syntax can be used for triggers on tables
and views. Instead of specifying “FOR r el at i onnane” before the event type and the optional directives
surrounding it, you can now put “ON r el at i onnane” after it, as shown in the syntax earlier in this chapter.

Description: Since Firebird 2.1, triggers can be defined to fire upon the database events CONNECT,
DISCONNECT, TRANSACTION START, TRANSACTION COMMIT and TRANSACTION ROLLBACK. Only the
database owner and SY SDBA can create, alter and drop these triggers.

db_event ::= CONNECT | DI SCONNECT | TRANSACTI ON START

45

DDL statements

| TRANSACTION COMM T | TRANSACTI ON ROLLBACK

nurber o= 0..32767 (default is 0)
<decl arati ons> .. = See PSQ.::DECLARE for the exact syntax
Example:

create trigger tr_connect
on connect
as
begi n
insert into dblog (w e, wanneer, wat)
val ues (current_user, current_tinestanp, 'verbind');
end

Execution of database triggers and handling of exceptions:

CONNECT and DISCONNECT triggers are executed in a transaction created specifically for this purpose. If
al goes well, the transaction is committed. Uncaught exceptions roll back the transaction, and:

- Inthe case of a CONNECT trigger, the connection is then broken and the exception returned to the client.
- With a DISCONNECT trigger, exceptions are not reported and the connection is broken as foreseen.

TRANSACTION triggers are executed within the transaction whose opening, committing or rolling-back
evokes them. The actions taken after an uncaught exception depend on the type:

- InaSTART trigger, the exception is reported to the client and the transaction is rolled back.

- InaCOMMIT trigger, the exception is reported, the trigger's actions so far are undone and the commit
is canceled.

- InaROLLBACK trigger, the exception is not reported and the transaction is rolled back as foreseen.

It follows from the above that there is no direct way of knowing if a DISCONNECT or TRANSACTION
ROLLBACK trigger caused an exception.

It also follows that you can't connect to a database if a CONNECT trigger causes an exception, and that you
can't start a transaction if a TRANSACTION START trigger does so. Both phenomena effectively lock you
out of your database while you need to get in there to fix the problem. See the note below for away around
this Catch-22 situation.

In the case of a two-phase commit, TRANSACTION COMMIT triggers fire in the prepare, not the commit
phase.

Note

Some Firebird command-line tools have been supplied with new switches to suppress the automatic firing of
database triggers:

gbak -nodbtriggers
i sql -nodbtriggers
nbackup -T

These switches can only be used by the database owner and SY SDBA.

46

DDL statements

Domains instead of datatypes
Changedin: 2.1

Description: Firebird 2.1 and up allow the use of domainsinstead of SQL datatypeswhen declaring local trigger
variables. See PSQL.::DECLARE for the exact syntax and details.

COLLATE in variable declarations
Changedin: 2.1

Description: Firebird 2.1 and up allow COLLATE clauses in local variable declarations. See PSQL::DECLARE
for syntax and details.

NOT NULL in variable declarations
Changedin: 2.1

Description: Firebird 2.1 and up allow NOT NULL constraints in local variable declarations. See
PSQL::DECLARE for syntax and details.

Multi-action triggers
Added in: 1.5

Description: Relation triggers can be defined to fire upon multiple operations (INSERT and/or UPDATE and/or
DELETE). Three new boolean context variables (I NSERTI NG, UPDATI NG and DELETI NG) have been added
S0 you can execute code conditionally within the trigger body depending on the type of operation.

Example:

create trigger biu _parts for parts
before insert or update
as
begi n
/* conditional code when inserting: */
if (inserting and new.id is null)
then new.id = gen_id(gen_partrec_id, 1);

/* common code: */
new. part name_upper = upper (nhew. partnane);
end

Note

In multi-action triggers, both context variables OLD and NEW are always available. If you use them in the
wrong situation (i.e. OLD while inserting or NEW while deleting), the following happens:

e If youtry to read their field values, NULL is returned.
¢ |f you try to assign values to them, a runtime exception is thrown.

BEGIN ... END blocks may be empty

Changedin: 1.5

47

DDL statements

Description: BEGIN ... END blocks may be empty in Firebird 1.5 and up, allowing you to write stub code without
having to resort to dummy statements.

Example:
create trigger bi_atable for atable
active before insert position O
as

begi n
end

CREATE TRIGGER no longer increments table change count
Changedin: 1.0

Description: In contrast to InterBase, Firebird does not increment the metadata change counter of the associated
table when CREATE, ALTER or DROP TRIGGER is used. For a full discussion, see ALTER TRIGGER no longer
increments table change count.

PLAN allowed in trigger code
Changedin: 1.5

Description: Before Firebird 1.5, atrigger containing aPLAN statement would be rejected by the compiler. Now
avalid plan can be included and will be used.

ALTER TRIGGER
Availablein: DSQL, ESQL

Description: Altersan existing trigger. Relation triggers cannot be changed into database triggers or vice versa.
The associated table or view of arelation trigger cannot be changed.

Syntax:

ALTER TRI GGER nane
[ACTI VE | | NACTI VE]
[{BEFORE | AFTER} <mutation_list> | ON db_event]
[POSI TI ON nunber]
[AS
[<decl arati ons>]
BEG N
[<st at enent s>]
END]

» See CREATE TRIGGER for the meaning of <nmut ati on_I i st > etc.

Database triggers
Addedin: 2.1

Description: The ALTER TRIGGER syntax (see above) has been extended to support database triggers. For afull
discussion of this feature, see CREATE TRIGGER :: Database triggers.

48

DDL statements

Domains instead of datatypes
Changedin: 2.1

Description: Firebird 2.1 and up alow the use of domainsinstead of SQL datatypeswhen declaring local trigger
variables. See PSQL::DECLARE for the exact syntax and details.

COLLATE in variable declarations
Changedin: 2.1

Description: Firebird 2.1 and up allow COLLATE clausesin local variable declarations. See PSQL::DECLARE
for syntax and details.

NOT NULL in variable declarations
Changedin: 2.1

Description: Firebird 2.1 and up allow NOT NULL constraints in local variable declarations. See
PSQL::DECLARE for syntax and details.

Multi-action triggers
Added in: 1.5

Description: The ALTER TRIGGER syntax (see above) has been extended to support multi-action triggers. For
afull discussion of thisfeature, see CREATE TRIGGER :: Multi-action triggers.

Restriction on altering used triggers
Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

PLAN allowed in trigger code
Changedin: 1.5

Description: Before Firebird 1.5, atrigger containing aPLAN statement would be rejected by the compiler. Now
avalid plan can be included and will be used.

ALTER TRIGGER no longer increments table change count
Changedin: 1.0

Description: Each timeyou use CREATE, ALTER or DROP TRIGGER, InterBase increments the metadata change
counter of the associated table. Once that counter reaches 255, no more metadata changes are possible on the
table (you can still work with the datathough). A backup-restore cycleis needed to reset the counter and perform
metadata operations again.

49

DDL statements

While this obligatory cleanup after many metadata changesisin itself a useful feature, it also means that users
who regularly use ALTER TRIGGER to deactivatetriggersduring e.g. bulk import operations are forced to backup
and restore much more often then needed.

Since changes to triggers don't imply structural changes to the table itself, Firebird no longer increments the

table change counter when CREATE, ALTER or DROP TRIGGER is used. One thing has remained though: once
the counter is at 255, you can no longer create, ater or drop triggers for that table.

CREATE OR ALTER TRIGGER
Availablein: DSQL
Added in: 1.5

Description: If the trigger does not yet exigt, it is created just asif CREATE TRIGGER were used. If it aready
exigts, it is atered and recompiled. Existing permissions and dependencies are preserved.

Syntax: Exactly the same asfor CREATE TRIGGER.

DROP TRIGGER

Availablein: DSQL, ESQL

Restriction on dropping used triggers

Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has

been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

DROP TRIGGER no longer increments table change count
Changedin: 1.0
Description: In contrast to InterBase, Firebird does not increment the metadata change counter of the associated

table when CREATE, ALTER or DROP TRIGGER is used. For afull discussion, see ALTER TRIGGER no longer
increments table change count.

RECREATE TRIGGER
Availablein: DSQL
Added in: 2.0

Description: Creates or recreates atrigger. If atrigger with the same name already exists, RECREATE TRIGGER
will try to drop it and create a new trigger. RECREATE TRIGGER will fail if the existing trigger isin use.

Syntax: Exactly the same as CREATE TRIGGER.

50

DDL statements

Restriction on recreating used triggers
Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

VIEW

Tip

Find amore recent version at Firebird 5.0 Language Reference: VIEW

CREATE VIEW

Availablein: DSQL, ESQL

Per-column aliases supported in view definition
Changedin: 2.1

Description: Firebird 2.1 and up allow the use of column aliasesin the SELECT statement. Y ou can alias none,
some or al of the columns; each alias used becomes the name of the corresponding view column.

Syntax (partial):
CREATE VI EWvi ewnane [<full _col um_Ili st >]
AS
SELECT <col umm_def> [, <colum_def> ...]
FROM . ..
[WTH CHECK OPTI ON|
<full _colum_list> ::= (colnane [, colnane ...])
<col umm_def > ::= {source_col | expr} [[AS] colalias]
Notes:

» If the full column list is also present, specifying column aliases is futile as they will be overridden by the
names in the column list.

e The full column list used to be mandatory for views whose SELECT statement contains expression-based
columns or identical column names. Now you can omit the full column list, provided that you alias such
columnsin the SELECT clause.

Full SELECT syntax supported

Changedin: 2.0

51

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-view.html

DDL statements

Description: From Firebird 2.0 onward view definitions are considered full-fledged SELECT statements.
Consequently, the following elements are (re)allowed in view definitions. FIRST, SKIP, ROWS, ORDER BY,
PLAN and UNION.

Note

The use of a UNION within aview is currently only supported if you supply a column list for the view (this
list is normally optional):

create view vpl anes (nake, nodel) as
sel ect make, nodel fromjets
uni on
sel ect make, nodel from props
uni on
sel ect nake, nodel fromgliders

In Firebird 2.5, the column list will become optional also for views with UNIONS.

PLAN subclause disallowed in 1.5, reallowed in 2.0
Changedin: 1.5, 2.0

Description: Firebird versions 1.5.x forbid the use of a PLAN subclause in a view definition. From 2.0 onward
aPLAN isalowed again.

Triggers on updatable views block auto-writethrough
Changedin: 2.0

Description: In versions prior to 2.0, Firebird often did not block the automatic writethrough to the underlying
table if one or more triggers were defined on a naturally updatable view. This could cause mutations to be
performed twice unintentionally, sometimes leading to data corruption and other mishaps. Starting at Firebird
2.0, thismisbehaviour has been corrected: now if you defineatrigger on anaturally updatable view, no mutations
to the view will be automatically passed on to the table; either your trigger takes care of that, or nothing will.
Thisisin accordance with the description in the InterBase 6 Data Definition Guide under Updating views with
triggers.

Warning

Some people have developed code that counts on or takes advantage of the prior behaviour. Such code should
be corrected for Firebird 2.0 and higher, or mutations may not reach the table at all.

View with non-participating NOT NULL columns in base table can be made
insertable

Changedin: 2.0

Description: Any view whose base table contains one or more non-participating NOT NULL columns is read-
only by nature. It can be made updatable by the use of triggers, but even with those, all INSERT attempts into
such views used to fail because the NOT NULL constraint on the base table was checked before the view trigger

52

DDL statements

got a chance to put things right. In Firebird 2.0 and up this is no longer the case: provided the right trigger is
in place, such views are now insertable.

Example:

The view below would give validation errors for any insert attempts in Firebird 1.5 and earlier. In
Firebird 2.0 and up it isinsertable;

create table base (x int not null, y int not null);
create view vbase as select x from base;
set term#
create trigger bi_base for vbase before insert
as
begi n
if (new.x is null) then new x = 33;
insert into base val ues (new. x, 0);

end#
set term ;#

Notes:

» Please notice that the problem described above only occurred for NOT NULL columns that were left outside
the view.

» Oddly enough, the problem would be gone if the base table itself had a trigger converting NULL input to
something valid. But then there was arisk that the insert would take place twice, due to the auto-writethrough
bug that has also been fixed in Firebird 2.

RECREATE VIEW
Availablein: DSQL

Added in: 1.5

Description: Creates or recreates a view. If aview with the same name already exists, RECREATE VIEW will
try to drop it and create a new view. RECREATE VIEW will fail if the existing view isin use.

Syntax: Exactly the same as CREATE VIEW.

53

Chapter 6

DML statements

Tip

Find amore recent version at Firebird 5.0 Language Reference: Data Manipulation (DML) Statements

DELETE

Tip

Find amore recent version at Firebird 5.0 Language Reference: DELETE

Availablein: DSQL, ESQL, PSQL

Description: Deletes rows from a database table (or from one or more tables underlying a view), depending on
the WHERE and ROWS clauses.

Syntax:
DELETE
[TRANSACTI ON nane]
FROM {t abl ename | viewnane} [[AS] alias]
[WHERE {search-conditions | CURRENT OF cursornane}]
[PLAN pl an_i t ens]
[ORDER BY sort _itens]
[ROA5 <nP [TO <n>]]
[RETURNI NG <val ues> [| NTO <vari abl es>]]
<nP, <n> = Any expression evaluating to an integer.
<val ues> = value_expression [, value_expression ...]

<vari abl es> :varnane [, :varnane ...]

Restrictions

e The TRANSACTION directiveis only available in ESQL.

¢ |napure DSQL session, WHERE CURRENT OF isn't of much use, since there exists no DSQL
statement to create a cursor.

e ThePLAN, ORDER BY and ROWS clauses are not available in ESQL.

e The RETURNING clauseisnot availablein ESQL.

e The"INTO <vari abl es>" subclauseisonly availablein PSQL.

« When returning values into the context variable NEW, this name must not be preceded by a
colon (“:).

COLLATE subclause for text BLOB columns

Added in: 2.0

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml-delete.html

DML statements

Description: COLLATE subclauses are now also supported for text BLOBS.
Example:

del ete from MyTabl e
where NaneBl ob collate pt_br = 'Joao'

ORDER BY
Availablein: DSQL, PSQL
Addedin: 2.0

Description: DELETE now allows an ORDER BY clause. This only makes sense in combination with ROWS,
but is also valid without it.

PLAN
Availablein: DSQL, PSQL
Added in: 2.0

Description: DELETE now allows aPLAN clause, so users can optimize the operation manually.

Relation alias makes real name unavailable

Changedin: 2.0

Description: If you give atable or view an aiasin aFirebird 2.0 or above statement, you must use the alias, not
the table name, if you want to qualify fields from that relation.

Examples:
Correct usage:
delete fromCities where nane starting 'Al ex'
delete fromCities where Cities.name starting 'Al ex'
delete fromCities C where nane starting 'Al ex'
delete fromCities C where C nanme starting 'Al ex'

No longer possible:

delete fromCities C where Cities.nane starting 'Al ex'

RETURNING

Availablein: DSQL, PSQL

55

DML statements

Added in: 2.1

Description: A DELETE statement removing at most one row may optionally include a RETURNING clausein
order to return values from the deleted row. The clause, if present, need not contain all of the relation's columns
and may also contain other columns or expressions.

Examples:
del ete from Schol ars

where firstnanme = 'Henry' and | astnanme = 'Higgins
returning |lastname, fullnanme, id

del ete from Dunbbel | s
order by iq desc
rows 1
returning lastnane, iq into :lnane, :ig;
Notes:

* InDSQL, astatement with a RETURNING clause always returns exactly one row. If no record was actually
deleted, thefieldsin thisrow areall NULL. Thisbehaviour may changein alater version of Firebird. In PSQL,
if no row was deleted, nothing is returned, and the receiving variables keep their existing val ues.

ROWS
Availablein: DSQL, PSQL
Added in: 2.0
Description: Limits the amount of rows deleted to a specified number or range.
Syntax:
ROWNE <> [TO <n>]
<>, <n> ::= Any expression evaluating to an integer

With asingle argument m the deletion is limited to the first mrows of the dataset defined by the table or view
and the optional WHERE and ORDER BY clauses.

Points to note:

« |f m> thetotal number of rowsin the dataset, the entire set is del eted.
* |f m=0, no rows are del eted.
* |If m<O, an error israised.

With two arguments mand n, the deletion is limited to rows mto n inclusively. Row numbers are 1-based.
Points to note when using two arguments:

« |f m> thetotal number of rows in the dataset, no rows are deleted.

« |If mlieswithin the set but n doesn't, the rows from mto the end of the set are del eted.
e Ifm<lorn<1,anerrorisraised.

e If n=ml, norows are deleted.

e If n<ml, anerror israised.

56

DML statements

ROWS can a'so be used with the SELECT and UPDATE statements.

EXECUTE BLOCK

Tip

Find amore recent version at Firebird 5.0 Language Reference: EXECUTE BLOCK

Availablein: DSQL
Added in: 2.0

Changedin: 2.1

Description: Executes ablock of PSQL code as if it were a stored procedure, optionally with input and output
parametersand variable declarations. Thisallowsthe user to perform “ on-the-fly” PSQL withinaDSQL context.

Syntax:

EXECUTE BLOCK [(<i nparans>)]
[RETURNS (<out par ans>)]
AS
[<decl arati ons>]
BEA N
[<PSQL st at enent s>]

END
<i npar ans> <param decl > = ? [, <inparans>]
<out par ans> <par am decl > [, <outparans>]

paramane <type> [NOT NULL] [COLLATE coll ation]
sql _datatype | [TYPE OF] donain
See PSQL:: DECLARE for the exact syntax

<par am decl >
<t ype>
<decl arati ons>

Examples:

This example injects the numbers O through 127 and their corresponding ASCII characters into the
table ASCIITABLE:

execut e bl ock

as
declare i int = 0;
begi n
while (i < 128) do
begin
insert into AsciiTable values (:i, ascii_char(:i));
i =i + 1
end
end

The next example cal cul ates the geometric mean of two numbers and returnsit to the user:

execute bl ock (x double precision = ?, y double precision = ?)
returns (gnean doubl e precision)
as

57

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml-execblock.html

DML statements

begi n
gnmean = sqgrt(x*y);
suspend;

end

Because this block has input parameters, it has to be prepared first. Then the parameters can be set
and the block executed. It depends on the client software how this must be done and even if it is
possible at all — see the notes below.

Our last exampletakestwo integer values, snal | est andl ar gest . For al thenumbersintherange
smal | est ..1 ar gest , the block outputs the number itself, its square, its cube and its fourth power.

execute block (smallest int = ?, largest int = ?)
returns (nunber int, square bigint, cube bigint, fourth bigint)
as
begi n
nunber = small est;
whil e (nunber <= largest) do

begi n
square = nunber * nunber;
cube = nunmber * square;
fourth = nunber * cube;
suspend;
nunber = nunber + 1;

end

end

Again, it depends on the client software if and how you can set the parameter values.
Notes:

» Some clients, especialy those allowing the user to submit several statements at once, may require you to
surround the EXECUTE BLOCK statement with SET TERM lines, like this:

set term#
execute block (...)
as
begi n
st at ement 1;
st at enent 2;
end
#
set term;#
In Firebird's isgl client you must set the terminator to something other than “; ” before you type in the
EXECUTEBLOCK statement. Otherwiseisgl, being line-oriented, will try to execute the part you have entered
as soon as it encounters the first semicolon.

» Executing ablock without input parameters should be possible with every Firebird client that allows the user
to enter his or her own DSQL statements. If there are input parameters, things get trickier: these parameters
must get their values after the statement is prepared but before it is executed. Thisrequires special provisions,
which not every client application offers. (Firebird's own isgl, for one, doesn't.)

» The server only accepts question marks (“?") as placeholders for the input values, not “: a”, “: MyPar ant
etc., or literal values. Client software may support the “: xxx” form though, which it will preprocess before
sending it to the server.

58

DML statements

 If the block has output parameters, you must use SUSPEND or nothing will be returned.

* Output is always returned in the form of a result set, just as with a SELECT statement. You can't use
RETURNING_VALUES or execute the block INTO some variables, even if there's only one result row.

COLLATE in variable and parameter declarations

Changedin: 2.1

Description: Firebird 2.1 and up allow COLLATE clauses in declarations of input/output parameters and local
variables.

Example:

execut e bl ock
(es_1 varchar(20) character set is08859 1 collate es_es = ?)

returns
(nl _1 varchar(20) character set is08859 1 collate du_nl)
as
declare s_tenp varchar (100) character set utf8 collate unicode;
begi n
end

NOT NULL in variable and parameter declarations

Changedin: 2.1

Description: Firebird 2.1 and up allow NOT NULL constraints in declarations of input/output parameters and
local variables.

Example:
execute block (a int not null =2, bint not null = ?)
returns (product bigint not null, message varchar(20) not null)
as
decl are usel ess_dumy tinestanp not null;
begi n
product = a*b;
if (product < 0) then nmessage = 'This is bel ow zero."';
else if (product > 0) then nmessage = 'This is above zero.';
el se nessage = ' This nust be zero.';
suspend;
end

Domains instead of datatypes

Changedin: 2.1

Description: Firebird 2.1 and up allow the use of domainsinstead of SQL datatypes when declaring i nput/output
parameters and local variables. With the “TYPE OF” modifier only the domain'stypeis used, not its NOT NULL
setting, CHECK constraint and/or default value. If the domain is of atext type, its character set and collation
are alwaysincluded.

59

DML statements

Example:

execute block (a nmy_domain = ?, b type of ny_other_domain = ?)
returns (p ny_third_domain)
as
declare s_tenmp type of ny_third_domain;
begi n

end

Warning

For input parameters, the collation that comeswith the domain is not taken into consideration when comparisons
(e.0. equality tests) are made. Thisis caused by a bug that has been fixed for Firebird 3.

EXECUTE PROCEDURE

Tip

Find amore recent version at Firebird 5.0 Language Reference: EXECUTE PROCEDURE

Availablein: DSQL, ESQL, PSQL
Changedin: 1.5

Description: Executes a stored procedure. In Firebird 1.0.x aswell asin InterBase, any input parameters for the
SP must be supplied asliterals, host language variables (in ESQL) or local variables (in PSQL). In Firebird 1.5
and above, input parameters may aso be (compound) expressions, except in static ESQL.

Syntax:

EXECUTE PROCEDURE pr ocnane
[TRANSACTI ON transacti on]
[<in_itenr [, <in_itenr ...]]
[RETURNI NG_VALUES <out _itenr [, <out_itenr ...]]

<in_itenp = <inparanek [<nullind>]
<out _itenp = <outvar> [<nullind>]
<i npar ane = an expression evaluating to the declared paraneter type
<out var > = a host |language or PSQ. variable to receive the return val ue
<nul I'i nd> = [INDI CATOR] : host _| ang_i ntvar
Notes

¢ TRANSACTION clauses are not supported in PSQL.
» Expression parameters are not supported in static ESQL, and not in Firebird versions below 1.5.

e NULL indicators are only vaid in ESQL code. They must be host language variables of type
integer.

e In ESQL, variable names used as parameters or outvars must be preceded by a colon (“:"). In

PSQL the colon is generally optional, but forbidden for the trigger context variables OLD and
NEW.

60

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml-execproc.html

DML statements

Examples:
In PSQL (with optional colons):
execut e procedure MakeFul | Name
: FirstNanme, : M ddl eNane, :LastNane
returning_val ues : Ful | Nane;
The same call in ESQL (with obligatory colons):
exec sql
execut e procedure MakeFul | Nane
:FirstName, : M ddl eNane, :Last Nane
ret urni ng_val ues : Ful | Nane;

...and in Firebird's command-line utility isgl (with literal parameters):

execut e procedure MakeFul | Name
"J', 'Edgar', 'Hoover';

Note: Inisgl, don't use RETURNING_VALUES. Any output values are shown automatically.
Finally, a PSQL example with expression parameters, only possiblein Firebird 1.5 and up:
execut e procedure MakeFul | Nanme

"M./Ms. ' || FirstName, M ddl eNane, upper (Last Nane)
returni ng_val ues Ful | Nane;

INSERT

Tip

Find amore recent version at Firebird 5.0 Language Reference: INSERT

Availablein: DSQL, ESQL, PSQL

Description: Adds rows to a database table, or to one or more tables underlying a view. Field values can be
given in the VALUES clause, they can be totally absent (in both cases, exactly one row isinserted), or they can
come from a SELECT statement (0 to many rows inserted).

Syntax:

| NSERT [TRANSACTI ON nane]
I NTO {tabl enane | vi ewnane}
{DEFAULT VALUES | [(<colum_list>)] <val ue_source>}
[RETURNI NG <val ue_list> [I NTO <vari abl es>]]

<colum_list> = colnane [, colnane ...]

<val ue_sour ce> = VALUES (<value_list>) | <select_stnt>
<val ue_|ist> = value_expression [, value_expression ...]
<vari abl es> = :varnanme [, :varnane ...]

<sel ect _stnt> a SELECT whose result set fits the target colums

61

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml-insert.html

DML statements

Restrictions

e The TRANSACTION directiveisonly available in ESQL.

e The RETURNING clauseisnot availablein ESQL.

e The"INTO <vari abl es>" subclauseisonly availablein PSQL.

« When returning values into the context variable NEW, this name must not be preceded by a
colon (“:).

e Sincev. 2.0, no column may appear more than once in theinsert list.

INSERT ... DEFAULT VALUES

Availablein: DSQL, PSQL

Addedin: 2.1

Description: The DEFAULT VALUES clause allows insertion of a record without providing any values at all,
neither directly nor from a SELECT statement. Thisisonly possibleif every NOT NULL or CHECKed columniin
the table either has a valid default declared or gets such a value from a BEFORE INSERT trigger. Furthermore,
triggers providing required field values must not depend on the presence of input values.

Example:

insert into journal default val ues
returning entry_id

RETURNING clause

Available in: DSQL, PSQL

Added in: 2.0

Changedin: 2.1

Description: An INSERT statement adding at most one row may optionally include a RETURNING clause in
order to return values from the inserted row. The clause, if present, need not contain all of the insert columns
and may also contain other columns or expressions. The returned values reflect any changes that may have been
made in BEFORE tiggers, but not those in AFTER triggers.

Examples:

insert into Scholars (firstnanme, |astnanme, address, phone, enmil)
values ('Henry', "Higgins', '27A Wnpole Street', '3231212', null)
returning |lastname, fullnanme, id

insert into Dunbbells (firstnane, |astname, iq)
sel ect fname, Iname, igq fromFriends order by ig rows 1
returning id, firstnane, iqinto :id, :fname, :iqQ;
Notes:

* RETURNING isonly supported for VALUES inserts and — since version 2.1 — singleton SELECT inserts.

62

DML statements

* InDSQL, astatement with a RETURNING clause always returns exactly one row. If no record was actually
inserted, the fields in this row are al NULL. This behaviour may change in a later version of Firebird. In
PSQL, if no row was inserted, nothing is returned, and the receiving variables keep their existing values.

UNION allowed in feeding SELECT

Changedin: 2.0
Description: A SELECT query used in an INSERT statement may now be a UNION.
Example:
insert into Menbers (nunmber, nane)
sel ect nunber, name from NewMenbers where Accepted = 1

uni on
sel ect nunber, nane from SuspendedMenbers where Vindicated = 1

MERGE

Tip

Find amore recent version at Firebird 5.0 L anguage Reference: MERGE

Availablein: DSQL, PSQL
Added in: 2.1

Description: Mergesdatainto atable or view. The source may atable, view or derived table (i.e. a parenthesized
SELECT statement or CTE). Each source record will be used to update one or more target records, insert a new
record inthetarget table, or neither. The action taken depends on the provided condition and the WHEN clause(s).
The condition will typically contain a comparison of fieldsin the source and target relations.

Syntax:

MERGE | NTO {tabl enane | viewnane} [[AS] alias]
USI NG {tabl ename | viewnane | (select_stnt)} [[AS] alias]
ON condition
VWHEN MATCHED THEN UPDATE SET col nane = value [, colname = value ...]
VWHEN NOT MATCHED THEN I NSERT [(<col ums>)] VALUES (<val ues>)

<colums> ::= colname [, colnane ...]
<val ues> = value [, value con]

Note: It is allowed to provide only one of the WHEN cl auses
Examples:

nmerge i nto books b
usi ng purchases p
on p.title = b.title and p.type = 'bk'
when mat ched t hen
update set b.desc = b.desc || '; ' || p.desc

63

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml-merge.html

DML statements

when not matched then
insert (title, desc, bought) values (p.title, p.desc, p.bought)

merge into custoners c
using (select * fromcustonmers_delta where id > 10) cd
on (c.id = cd.id)
when mat ched then update set name = cd. nane
when not matched then insert (id, name) values (cd.id, cd.nane)

Note

WHEN NOT MATCHED should be interpreted from the point of view of the source (the relation in the USING
clause). That is: if a source record doesn't have a match in the target table, the INSERT clause is executed.
Conversely, records in the target table without a matching source record don't trigger any action.

Warning

If the WHEN MATCHED clauseis present and multiple source records match the same record in the target table,
the UPDATE clause is executed for all the matching source records, each update overwriting the previous one.
This is non-standard behaviour: SQL-2003 specifies that in such a case an exception must be raised.

SELECT

Tip

Find amore recent version at Firebird 5.0 Language Reference: SELECT

Availablein: DSQL, ESQL, PSQL

Aggregate functions: Extended functionality
Changedin: 1.5
Description: Several types of mixing and nesting aggragate functions are supported since Firebird 1.5. They

will be discussed in the following subsections. To get the complete picture, also look at the SELECT :: GROUP
BY sections.

Mixing aggregate functions from different contexts

Firebird 1.5 and up allow the use of aggregate functions from different contexts inside a single expression.

Example
sel ect
r.rdb$rel ati on_nanme as "Tabl e nane",
(select max(i.rdb$statistics) || " (" || count(*) || ")

fromrdb$relation_fields rf
where rf.rdb$rel ati on_name = r.rdb$rel ati on_nane
) as "Max. IndexSel (# fields)"
from
rdb$rel ations r

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml.html#fblangref50-dml-select

DML statements

join rdb$indices i on (i.rdb$relation_name = r.rdb$rel ati on_nane)
group by r.rdb$rel ation_nane
havi ng max(i.rdb$statistics) >0
order by 2

This admittedly rather contrived query shows, in the second column, the maximum index selectivity of any
index defined on atable, followed by the table'sfield count between parentheses. Of course you would normally
display the field count in a separate column, or in the column with the table name, but the purpose here is to
demonstrate that you can combine aggregates from different contextsin asingle expression.

Warning

Firebird 1.0 also executes this type of query, but gives the wrong results!

Aggregate functions and GROUP BY items inside subqueries

SinceFirebird 1.5t is possible to use aggregate functions and/or expressions contained in the GROUPBY clause
inside a subquery.

Examples:

This query returns each tables ID and field count. The subquery refers to flds.rdb
$rel ati on_nanme, whichisalso aGROUPBY item:

sel ect
flds.rdb$rel ati on_nane as "Rel ati on nane",
(select rels.rdb$relation_id
fromrdb$relations rels
where rel s.rdb$rel ati on_nanme = flds.rdb$rel ati on_nane
) as "ID',
count(*) as "Fields"
fromrdb$relation fields flds
group by flds.rdb$rel ati on_nane

The next query showsthe last field from each table and and its 1-based position. It uses the aggregate
function MAX in asubquery.

sel ect
flds. rdb$rel ati on_nane as "Tabl e"
(select flds2.rdb$field _nane
fromrdb$relation fields flds2
wher e
flds2.rdb$rel ati on_nanme = flds.rdb$rel ati on_name
and flds2.rdb$field_position = max(flds.rdb$fiel d_position)
) as "Last field",
max(fl ds.rdb$fiel d_position) + 1 as "Last fiel dpos"
fromrdb$relation fields flds
group by 1

The subquery aso contains the GROUP BY item f | ds. r db$r el ati on_nan®e, but that's not
immediately obvious because in this case the GROUP BY clause uses the column number.

Subqueries inside aggregate functions

Using a singleton subselect inside (or as) an aggregate function argument is supported in Firebird 1.5 and up.

65

DML statements

Example:

sel ect
r.rdb$rel ati on_nane as "Tabl e",
sum (select count(*)
fromrdb$relation fields rf
where rf.rdb$rel ati on_nane = r.rdb$rel ati on_nane)
) as "Ind. x Fields"
from
rdb$rel ations r
join rdb$i ndi ces
on (i.rdb$relation_nane = r.rdb$rel ati on_nane)
group by
r.rdb$rel ati on_nane

Nesting aggregate function calls

Firebird 1.5 allows the indirect nesting of aggregate functions, provided that the inner function is from alower
SQL context. Direct nesting of aggregate function calls, asin “COUNT(MAX(price))", is till forbidden and
punishable by exception.

Example: See under Subqueries inside aggregate functions, where COUNTY() is used inside a SUM().

Aggregate statements: Stricter HAVING and ORDER BY

Firebird 1.5 and above are stricter than previous versions about what can beincluded inthe HAVING and ORDER
BY clauses. If, in the context of an aggregate statement, an operand in aHAVING or ORDER BY item contains
acolumn name, it is only accepted if one of the following is true:

» The column name appears in an aggregate function call (e.g. “HAVI NG MAX(SALARY) > 10000").

» The operand equals or is based upon a non-aggregate column that appears in the GROUP BY list (by name
or position).

“Is based upon” means that the operand need not be exactly the same as the column name. Suppose there's a
non-aggregate column “STR” in the select list. Then it's OK to use expressions like “UPPER(STR)”, “STR || 1"
or “SUBSTRING(STR FROM 4 FOR 2)” in the HAVING clause — even if these expressions don't appear as such
in the SELECT or GROUP BY list.

[AS] before relation alias
Added in: IB

Description: The keyword AS can optionally be placed before arelation alias, just asit can be placed before a
column alias. Thisfeature dates back to InterBase times, but wasn't documented in the IB Language Reference.

Syntax:

SELECT ... FROM <rel ation> [AS] alias

<relation> ::= A table, view or selectable SP
Examples:

sel ect order_no, total, fullnane

66

DML statements

fromorders as o join custoners as ¢ on o.cust_id = c.cust_id

sel ect order_no, total, fullnane
fromorders o join custoners ¢ on o.cust_id = c.cust _id

The two queries are fully equivalent.

COLLATE subclause for text BLOB columns
Added in: 2.0

Description: COLLATE subclauses are now also supported for text BLOBS.
Example:

sel ect NaneBl ob from MyTabl e
where NaneBl ob collate pt_br = 'Joao

Common Table Expressions (“WITH ... AS ... SELECT")
Availablein: DSQL, PSQL
Added in: 2.1

Description: A common table expression or CTE can bedescribed asavirtual tableor view, defined in apreamble
to a main query, and going out of scope after the main query's execution. The main query can reference any
CTEsdefined in the preamble asif they were regular tables or views. CTES can berecursive, i.e. self-referencing,
but they cannot be nested.

Syntax:

<ct e- def s>
<mai n- query>

<cte-construct>

<ct e-defs> ;= WTH [RECURSI VE] <cte> [, <cte> ...]

<cte> ::= nanme [(<colum-list>)] AS (<cte-stnt>)
<colum-1list> = colum-alias [, colum-alias ...]

<cte-stnt> ;1= any SELECT statenent or UNI ON

<mai n- query> ;.= the nmain SELECT statenent, which can refer to the

CTEs defined in the preanble
Example:

wi th dept _year budget as (
sel ect fiscal year,
dept _no,
sun(proj ect ed_budget) as budget
from proj _dept budget
group by fiscal year, dept_no

sel ect d. dept_no,

67

DML statements

d. depart nent,
dyb_2008. budget as budget 08,
dyb_2009. budget as budget 09
from departnent d
|l eft join dept_year_budget dyb_2008
on d.dept _no = dyb_2008. dept _no
and dyb_2008.fiscal _year = 2008
left join dept_year_ budget dyb_2009
on d.dept_no = dyb_2009. dept _no
and dyb_2009.fiscal _year = 2009
where exists (
select * from proj _dept_budget b
where d.dept _no = b. dept_no
)

Notes:

» A CTE definition can contain any legal SELECT statement, as long as it doesn't have a “WITH...” preamble
of its own (no nesting).

» CTEsdefined for the same main query can reference each other, but care should be taken to avoid loops.
» CTEs can be referenced from anywhere in the main query.
» Each CTE can be referenced multiple times in the main query, possibly with different aliases.

* When enclosed in parentheses, CTE constructs can be used as subqueriesin SELECT statements, but also in
UPDATES, MERGES €tc.

* InPSQL, CTEs are aso supported in FOR loop headers:

for with nmy_rivers as (select * fromrivers where owner = 'ne')
sel ect nane, length fromny_rivers into :rnanme, :rlen

do

begi n

end

Recursive CTES

A recursive (self-referencing) CTE is a UNION which must have at least one non-recursive member, called the
anchor. The non-recursive member(s) must be placed before the recursive member(s). Recursive members are
linked to each other and to their non-recursive neighbour by UNION ALL operators. The unions between non-
recursive members may be of any type.

Recursive CTES require the RECURSIVE keyword to be present right after WITH. Each recursive union member
may reference itself only once, and it must do so in a FROM clause.

A great benefit of recursive CTEs isthat they use far less memory and CPU cycles than an equivaent recursive
stored procedure.

The execution pattern of arecursive CTE is asfollows:
» The engine begins execution from a non-recursive member.

» For each row evaluated, it starts executing each recursive member one-by-one, using the current values from
the outer row as parameters.

68

DML statements

* If the currently executing instance of arecursive member produces no rows, execution loops back one level
and gets the next row from the outer result set.

Example with a recursive CTE:

with recursive
dept _year budget as (
sel ect fiscal _year,
dept _no,
sum(pr oj ect ed_budget) as budget
from proj _dept _budget
group by fiscal year, dept_no
)
dept _tree as (
sel ect dept_no,
head_dept,
depart nment,
cast('' as varchar(255)) as indent
from depart nent
where head_dept is nul

uni on al

sel ect d. dept_no,
d. head_dept,
d. depart nent,
h.i ndent ||

from departnent d
join dept _tree h on d. head_dept = h.dept_no

)

sel ect d. dept_no,
d.indent || d.departnent as departnment,
dyb_2008. budget as budget 08,
dyb_2009. budget as budget 09
fromdept _tree d
left join dept_year budget dyb_2008
on d.dept_no = dyb_2008. dept _no
and dyb_2008.fiscal _year = 2008
left join dept_year_budget dyb_2009
on d.dept_no = dyb_2009. dept _no
and dyb_2009.fiscal _year = 2009

Notes on recursive CTES:

» Aggregates (DISTINCT, GROUP BY, HAVING) and aggregate functions (SUM, COUNT, MAX etc) are not
allowed in recursive union members.

» A recursive reference cannot participate in an outer join.

* The maximum recursion depth is 1024.

Derived tables (* SELECT FROM SELECT")

Added in: 2.0

Description: A derived tableistheresult set of aSELECT query, used in an outer SELECT asif it werean ordinary
table. Put otherwise, it is a subquery in the FROM clause.

69

DML statements

Syntax:

(sel ect-query)
[[AS] derived-table-alias]
[(<derived-col um-aliases>)]

<derived-colum-aliases> := colum-alias [, colum-alias ...]

Examples:

The derived table in the query below (shown in boldface) contains al the relation names in the
database followed by their field count. The outer SELECT produces, for each existing field count, the
number of relations having that field count.

sel ect fieldcount,
count(relation) as numtables

from (select r.rdb$relation_nanme as relation,

count (*) as fieldcount

from rdb$relations r
join rdb$relation_fields rf
on rf.rdb$rel ati on_name = r.rdb$rel ati on_nane
group by relation)

group by fiel dcount

A trivial example demonstrating the use of a derived table alias and column aliases list (both are
optional):

sel ect dbi nfo. descr,
dbi nf 0. def _char set
from (select * fromrdb$database) dbinfo
(descr, rel _id, sec_class, def_charset)

Notes:

Derived tables can be nested.

Derived tables can be unions and can be used in unions. They can contain aggregate functions, subselectsand
joins, and can themselves be used in aggregate functions, subselects and joins. They can also be or contain
gueries on selectable stored procedures. They can have WHERE, ORDER BY and GROUP BY clauses, FIRST,
SKIP or ROWS directives, etc. etc.

Every column in aderived table must have aname. If it doesn't have one by nature (e.g. becauseit'saconstant)
it must either be given an alias in the usual way, or a column aiases list must be added to the derived table
specification.

The column aliases list is optional, but if it is used it must be complete. That is: it must contain an alias for
every column in the derived table.

The optimizer can handle a derived table very efficiently. However, if the derived table is involved in an
inner join and contains a subquery, then no join order can be made.

FIRST and SKIP

Availablein: DSQL, PSQL

Added in: 1.0

70

DML statements

Changed in: 1.5
Better alternative: ROWS

Description: FIRST limits the output of a query to the first so-many rows. SKIP will suppress the given number
of rows before starting to return output.

Tip

In Firebird 2.0 and up, use the SQL-compliant ROWS syntax instead.

Syntax:
SELECT [FIRST (<int-expr>)] [SKIP (<int-expr>)] <colums> FROM . ..

<i nt - expr > = Any expression evaluating to an integer.
<col ums> ;.= The usual output colum specifications.

Note

If <i nt - expr >isaninteger literal or aquery parameter, the“() " may be omitted. Subselectson
the other hand require an extra pair of parentheses.

FIRST and SKIP are both optional. When used together asin “FIRST mSKIP n”, the n topmast rows of the output
set are discarded and the first mrows of the remainder are returned.

SKIP O is alowed, but of course rather pointless. FIRST 0 is allowed in version 1.5 and up, where it returns an
empty set. In 1.0.x, FIRST 0 causes an error. Negative SKIP and/or FIRST values always result in an error.

If a SKIP lands past the end of the dataset, an empty set isreturned. If the number of rows in the dataset (or the
remainder after a SKIP) is less than the value given after FIRST, that smaller number of rowsis returned. These
are valid results, not error situations.

Examples:
The following query will return the first 10 names from the People table:

select first 10 id, nane from Peopl e
order by nane asc

The following query will return everything but the first 10 names:

sel ect skip 10 id, name from Peopl e
order by nane asc

And this one returns the last 10 rows. Notice the double parentheses:
sel ect skip ((select count(*) - 10 from People))

id, name from Peopl e
order by nane asc

This query returns rows 81-100 of the People table:

select first 20 skip 80 id, nane from Peopl e
order by nane asc

71

DML statements

Two Gotchaswith FIRST in subselects
e This

del ete from MyTabl e where IDin (select first 10 ID from MyTabl e)

the ROWS syntax, available since Firebird 2.0.
e Querieslike:

...where F1 in (select first 5 F2 from Tabl e2 order by 1 desc)

...where exists
(select first 5 F2 from Tabl e2
where Tabl e2. F2 = Tabl el. F1
order by 1 desc)

will deleteall of therowsinthetable. Ouch! The sub-select isevaluating each 10 candidate rowsfor deletion,
deleting them, dlipping forward 10 more... ad infinitum, until there are no rows left. Beware! Or better: use

won't work as expected, because the optimization performed by the engine transforms the IN predicate to
the correlated EXISTS predicate shown below. It's obvious that in this case FIRST N doesn't make any sense:

GROUP BY

Description: GROUP BY merges rows that have the same combination of values and/or NULLs in the item list
into a single row. Any aggregate functions in the select list are applied to each group individually instead of

to the dataset as awhole.
Syntax:
SELECT ... FROM ...

GROUP BY <itemr [, <item ...]

<itenr ::= colum-nanme [COLLATE coll ation- nane]

Note: If you group by a column position, the expression at that position is copied internally from the select list.

| colume-alias
| col um-position
| expression

Only non-negative integer literals will be interpreted as column positions. If they are outside the
rangefrom 1to the number of columns, an error israised. Integer valuesresulting from expressions
or parameter substitutions are smply invariables and will be used as such in the grouping. They
will have no effect though, astheir value is the same for each row.

A GROUP BY item cannot be a reference to an aggregate function (including one that is buried
inside an expression) from the same context.

The select list may not contain expressionsthat can have different values within agroup. To avoid
this, the rule of thumb isto include each non-aggregate item from the select list in the GROUP BY
list (whether by copying, alias or paosition).

If it concerns a subquery, that subquery will be executed at |east twice.

Grouping by alias, position and expressions

Changedin: 1.0, 1.5, 2.0

72

DML statements

Description: In addition to column names, Firebird 2 allows column aliases, column positions and arbitrary
valid expressions as GROUP BY items.

Examples:

These three queries all achieve the same resuilt:

sel ect strlen(lastnane) as | en_nanme, count(*)
from peopl e
group by | en_name

sel ect strlen(lastnane) as | en_name, count(*)
from peopl e
group by 1

sel ect strlen(lastnane) as |en_nanme, count(*)

from peopl e
group by strlen(l astnane)

History: Grouping by UDF resultswas added in Firebird 1. Grouping by column positions, CASE outcomes and

alimited number of internal functionsin Firebird 1.5. Firebird 2 added column aliases and expressionsin general
asvalid GROUPBY items (“expressionsin general” absorbing the UDF, CASE and interna functions lot).

HAVING: Stricter rules

Changedin: 1.5

Description: See Aggregate statements. Stricter HAVING and ORDER BY.

JOIN

Ambiguous field names rejected
Changedin: 1.0

Description: InterBase 6 accepts and executes statements like the one below, which refers to an unqualified
column name even though that name exists in both tables participating in the JOIN:

sel ect buses. name, garages. nane
from buses join garages on buses.garage id = garage.id

where nane = ' Phideaux |11l

The results of such a query are unpredictable. Firebird Dialect 3 returns an error if there are ambiguous field
namesin JOIN statements. Dialect 1 gives awarning but will execute the query anyway.

CROSS JOIN
Added in: 2.0
Description: Firebird 2.0 and up support CROSS JOIN, which performs a full set multiplication on the tables

involved. Previously you had to achieve this by joining on a tautology (a condition that is always true) or by
using the comma syntax, now deprecated.

73

DML statements

Syntax:
SELECT ...
FROM <rel ati on> CRCSS JO N <rel ati on>

<relation> ::= {table | view| cte | (select_stnt)} [[AS] alias]

Note: If you use CROSS JOIN, you can't use ON.
Example:

select * from Men cross join Wnen
order by Men.age, Wnen. age

-- old syntax:

- - select * fromMen join Wonen on 1 =1
-- order by Men. age, Wonen. age

-- conmma synt ax:

- - select * from Men, Wonen
-- order by Men. age, Wonen. age

Named colums JOIN
Added in: 2.1

Description: A named colums join is an equi-join on the columns named in the USING clause. These columns
must exist in both relations.

Syntax:
SELECT ...
FROM <rel ation> [<join_type>] JON <rel ati on>
USI NG (col name [, colnane ...])

{table | view | cte | (select_stnt)} [[AS] alias]
INNER | {LEFT | RIGHT | FULL} [QUTER]

<rel ati on>
<j oi n_type>

Example:

select *
from books join shel ves
usi ng (shel f, bookcase)

The equivalent in traditional syntax:

sel ect *
from books b join shelves s
on b.shelf = s.shelf and b. bookcase = s. bookcase

Notes:

* Thecolumnsinthe USING clause can be selected without qualifier. Be aware, however, that doing so in outer
joinsdoesn't always give the sameresult asselecting | ef t .col name or ri ght .col nane. One of thelatter
may be NULL while the other isn't; plain col nane aways returns the non-NULL alternative in such cases.

74

DML statements

e SELECT * from anamed columns join returns each USING column only once. In outer joins, such a column
always contains the non-NULL alternative except for rows where the field is NULL in both tables.

Natural JOIN
Added in: 2.1

Description: A natural join is an automatic equi-join on all the columns that exist in both relations. If there are
no common column names, a CROSS JOIN is produced.

Syntax:
SELECT . ..
FROM <rel ati on> NATURAL [<join_type> JON <rel ation>

{table | view | cte | (select_stnt)} [[AS] alias]
INNER | {LEFT | RIGHT | FULL} [CQUTER]

<rel ati on>
<join_type>

Example:
select * fromPupils natural left join Tutors

Assuming that the Pupils and Tutors tables have two field names in common: TUTOR and CLASS,
the equivalent traditional syntax is:

select * fromPupils p left join Tutors t
on p.tutor = t.tutor and p.class = t.class

Notes:

» Common columns can be selected from a natural join without qualifier. Beware, however, that doing so in
outer joins doesn't always gives the same result as selecting | ef t .col nane or ri ght .col nane. One of
the latter may be NULL while the other isn't; plain col nanme always returns the non-NULL alternative in
such cases.

e SELECT * from anatural join returns each common column only once. In outer joins, such acolumn always
contains the non-NULL alternative except for rows where the field is NULL in both tables.

ORDER BY
Syntax:
SELECT ... FROM...
O?DER BY <ordering-item> [, <ordering-itemr ...]
<ordering-itenm> ::= {col-nane | col-alias | col-position | expression}

[COLLATE col | ati on- nane]

[ASCI ENDI NG | DESC] ENDI NG]
[NULLS { FI RST| LAST}]

Order by colum alias

Added in: 2.0

75

DML statements

Description: Firebird 2.0 and above support ordering by column alias.
Example:
sel ect rdb$character_set _id as charset _id,
rdb$col l ation_id as coll _id,
rdb$col | ati on_nane as name

fromrdb$col | ati ons
order by charset _id, coll _id

Ordering by column position causes * expansion
Changedin: 2.0

Description: If you order by column position in a “SELECT *” query, the engine will now expand the * to
determine the sort column(s).

Examples:
The following wasn't possible in pre-2.0 versions:

select * fromrdb$coll ations
order by 3, 2

The following would sort the output set on Fi | ns. Di r ect or in previous versions. In Firebird 2
and up, it will sort on the second column of Books:

sel ect Books.*, Filns.Director from Books, Filns
order by 2

Ordering by expressions
Addedin: 1.5

Description: Firebird 1.5 introduced the possibility to use expressions as ordering items. Please note that
expressions consisting of a single non-negative whole number will beinterpreted as column positions and cause
an exception if they're not in the range from 1 to the number of columns.

Example:

select x, y, note fromPairs
order by x+y desc

Note

The number of function or procedure invocations resulting from a sort based on a UDF or stored procedureis
unpredictable, regardless whether the ordering is specified by the expression itself or by the column position
number.

Notes:

» Thenumber of function or procedureinvocations resulting from a sort based on a UDF or stored procedureis
unpredictable, regardless whether the ordering is specified by the expression itself or by the column position
number.

76

DML statements

* Only non-negative whole number literalsareinterpreted as column positions. A whole number resulting from
an expression evaluation or parameter substitution is seen as an integer invariable and will lead to a dummy
sort, sinceits value is the same for each row.

NULLs placement
Changedin: 1.5, 2.0

Description: Firebird 1.5 has introduced the per-column NULLS FIRST and NULLS LAST directives to specify
where NULL s appear in the sorted column. Firebird 2.0 has changed the default placement of NULLSs.

Unless overridden by NULLS FIRST or NULLS LAST, NULLsin ordered columns are placed as follows:
» InFirebird 1.0 and 1.5: at the end of the sort, regardless whether the order is ascending or descending.
» InFirebird 2.0 and up: at the start of ascending orderings and at the end of descending orderings.

See also the table below for an overview of the different versions.

Table 6.1. NULLs placement in ordered columns

Ordering NULLs placement
Firebird 1 Firebird 1.5 Firebird 2
order by Field [asC] bottom bottom top
order by Field desc bottom bottom bottom
order by Field [asc | desc] nullsfirst — top top
order by Field [asc | desc] nulls last — bottom bottom
Notes

¢ Pre-existing databases may need a backup-restore cycle before they show the correct NULL ordering
behaviour under Firebird 2.0 and up.

* No index will be used on columns for which a non-default NULLS placement is chosen. In Firebird 1.5,
that is the case with NULLS FIRST. In 2.0 and higher, with NULLS LAST on ascending and NULLS FIRST
on descending sorts.

Examples:

select * from nsg
order by process_tinme desc nulls first

select * from docunent
order by strlen(description) desc
rows 10

sel ect doc_nunber, doc_date from payorder
uni on all
sel ect doc_nunber, doc_date from budgorder

77

DML statements

order by 2 desc nulls last, 1 asc nulls first

Stricter ordering rules with aggregate statements
Changedin: 1.5

Description: See Aggregate statements: Stricter HAVING and ORDER BY.

PLAN
Availablein: DSQL, ESQL, PSQL

Description: Specifies a user plan for the data retrieval, overriding the plan that the optimizer would have
generated automatically.

Syntax:
PLAN <pl an_expr>
<pl an_expr> i:= [JON]| [SORT] [MERGE]] (<plan_itenmr [, <plan_itenr ...])
<plan_itene ::= <basic_itenm> | <plan_expr>

<basic_itenr {table | alias}
{ NATURAL
| I NDEX (<indexlist>))

| ORDER index [INDEX (<indexlist>)]}

<i ndexl i st > index [, index ...]

Handling of user PLANs improved

Changedin: 2.0

Description: Firbird 2 has implemented the following improvements in the handling of user-specified PLANS:
» Planfragmentsare propagated to nested levels of joins, enabling manual optimization of complex outer joins.
» User-supplied planswill be checked for correctnessin outer joins.

 Short-circuit optimization for user-supplied plans has been added.

* A user-specified access path can be supplied for any SELECT-based statement or clause.

ORDER with INDEX

Changedin: 2.0

Description: A single plan item can now contain both an ORDER and an INDEX directive (in that order).
Example:

plan (MyTabl e order ix_nyfield index (ix_this, ix_that))

78

DML statements

PLAN must include all tables

Changedin: 2.0

Description: In Firebird 2 and up, a PLAN clause must handle all the tables in the query. Previous versions
sometimes accepted incomplete plans, but thisis no longer the case.

Relation alias makes real name unavailable

Changedin: 2.0

Description: If you give atable or view an aiasin aFirebird 2.0 or above statement, you must use the alias, not
the table name, if you want to qualify fields from that relation.

Examples:
Correct usage:
sel ect pears from Fruit
sel ect Fruit.pears fromFruit
sel ect pears fromFruit F
sel ect F.pears fromFruit F
No longer possible:

select Fruit.pears fromFruit F

ROWS
Availablein: DSQL, PSQL
Added in: 2.0
Description: Limits the amount of rows returned by the SELECT statement to a specified number or range.
Syntax:

With asingle SELECT:

SELECT <col ums> FROM . ..

[WHERE . ..]

[ORDER BY . ..]
ROAS <m> [TO <n>]

<col ums> = The usual output colum specifications.
<mp, <n> = Any expression evaluating to an integer.
With a UNION:

SELECT [FIRST p] [SKIP g] <colums> FROM ... [WHERE ...]

79

DML statements

UNION [ALL | DI STI NCT]

SELECT [FIRST r] [SKIP s] <colums> FROM ... [WHERE ...]
[ORDER BY .. .]

ROA5 <> [TO <n>]

With asingle argument m the first mrows of the dataset are returned.
Points to note:

« |f m> thetotal number of rows in the dataset, the entire set is returned.
e If m=0, an empty set is returned.
e |If m<O, anerror israised.

With two arguments mand n, rows mto n of the dataset are returned, inclusively. Row numbers are 1-based.
Points to note when using two arguments:

» If m> thetotal number of rows in the dataset, an empty set is returned.

* If mlieswithin the set but n doesn't, the rows from mto the end of the set are returned.
e Ifm<lorn<1, anerrorisraised.

* If n =m1l, an empty set isreturned.

e If n<ml, anerror israised.

The SQL-compliant ROWS syntax obviates the need for FIRST and SKIP, except in one case: a SKIP without
FIRST, which returnsthe entire remainder of the set after skipping agiven number of rows. (Y ou can often “fake
it” though, by supplying a second argument that you know to be bigger than the number of rowsin the set.)

Y ou cannot use ROWS together with FIRST and/or SKIP in asingle SELECT statement, but isit valid to use one
form in the top-level statement and the other in subselects, or to use the two syntaxes in different subselects.

When used with a UNION, the ROWS subclause applies to the UNION as a whole and must be placed after the
last SELECT. If you want to limit the output of one or more individual SELECTswithinthe UNION, you havetwo
options: either use FIRST/SKIP on those SELECT statements (probably of limited use, as you can't use ORDER
BY on individual selects within aunion), or convert them to derived tables with ROWS clauses.

ROWS can also be used with the UPDATE and DELETE statements.

UNION

Availablein: DSQL, ESQL, PSQL

UNIONS in subqueries
Changedin: 2.0

Description: UNIONs are now alowed in subqueries. This applies not only to column-level subqueries in a
SELECT list, but also to subqueries in ANY|SOME, ALL and IN predicates, as well as the optional SELECT
expression that feeds an INSERT.

Example:

sel ect name, phone, hourly_rate from cl owns
where hourly rate < all
(select hourly rate fromjugglers
uni on

80

DML statements

sel ect hourly rate from acrobats)
order by hourly rate

UNION DISTINCT
Added in: 2.0

Description: Y ou can now usetheoptional DISTINCT keyword when defining aUNION. Thiswill show duplicate
rows only once instead of every time they occur in one of the tables. Since DISTINCT, being the opposite of
ALL, isthe default mode anyway, this doesn't add any new functionality.

Syntax:
SELECT (...) FROM (...)

UNI ON [DI STINCT | ALL]
SELECT (...) FROM(...)

Example:
sel ect nanme, phone fromtranslators

uni on di stinct
sel ect nanme, phone from proofreaders

Translators who also work as proofreaders (a not uncommon combination) will show up only once
in the result set, provided their phone number is the samein both tables. The same result would have
been obtained without DISTINCT. With ALL, they would appear twice.

WITH LOCK
Availablein: DSQL, PSQL
Addedin: 1.5

Description: WITH LOCK providesalimited explicit pessimistic locking capability for cautious usein conditions
where the affected row set is:

a. extremely small (idedly, asingleton), and
b. precisely controlled by the application code.

Thisisfor expertsonly!

The need for a pessimistic lock in Firebird is very rare indeed and should be well understood before use of
this extension is considered.

Itisessential to understand the effects of transaction isolation and other transaction attributes before attempting
to implement explicit locking in your application.

Syntax:
SELECT ... FROM ssingle_table
[WHERE . . .]
[FOR UPDATE [OF ...]]
W TH LOCK

If the WITH LOCK clause succeeds, it will secure alock on the selected rows and prevent any other transaction
from obtaining write access to any of those rows, or their dependants, until your transaction ends.

81

DML statements

If the FOR UPDATE clause is included, the lock will be applied to each row, one by one, asit is fetched into
the server-side row cache. It becomes possible, then, that a lock which appeared to succeed when requested
will nevertheless fail subsequently, when an attempt is made to fetch a row which becomes locked by another
transaction.

WITH LOCK can only be used with atop-level, single-table SELECT statement. It is not available:

* inasubquery specification;

» forjoined sets;

» with the DISTINCT operator, a GROUP BY clause or any other aggregating operation;
* withaview;

 with the output of a selectable stored procedure;

» with an external table.

A lengthier, more in-depth discussion of “SELECT ... WITH LOCK” isincluded in the Notes. It is a must-read
for everybody who considers using this feature.

UPDATE

Tip

Find a more recent version at Firebird 5.0 Language Reference: UPDATE

Availablein: DSQL, ESQL, PSQL

Description: Changes valuesin atable (or in one or more tables underlying a view). The columns affected are
specified in the SET clause; the rows affected may be limited by the WHERE and ROWS clauses.

Syntax:
UPDATE [TRANSACTI ON nane] {tablenane | viewnane} [[AS] alias]
SET col = newal [, col = newal ...]
[WHERE {search-conditions | CURRENT OF cursornane}]
[PLAN pl an_it ens]
[ORDER BY sort _itens]
[RONB <n» [TO <n>]]
[RETURNI NG <val ues> [I NTO <vari abl es>]]
<ne, <n> = Any expression evaluating to an integer.
<val ues> = value_expression [, value_expression ...]
<vari abl es> = :varnane [, :varnane ...]
Restrictions

e The TRANSACTION directiveisonly available in ESQL.

e Inapure DSQL session, WHERE CURRENT OF isn't of much use, since there exists no DSQL
statement to create a cursor.

The PLAN, ORDER BY and ROWS clauses are not available in ESQL.

Sincev. 2.0, no column may be SET more than once in the same UPDATE statement.

The RETURNING clauseis not available in ESQL.

The“INTO <vari abl es>" subclauseisonly availablein PSQL.

When returning values into the context variable NEW, this name must not be preceded by a
colon (“:).

L] L] L] L] L]

82

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml-update.html

DML statements

COLLATE subclause for text BLOB columns

Added in: 2.0
Description: COLLATE subclauses are now also supported for text BLOBS.
Example:

update MyTabl e

set NameBl obSp = ' Juan’
wher e NameBl obBr collate pt_br = "'Joao'

ORDER BY
Availablein: DSQL, PSQL
Addedin: 2.0

Description: UPDATE now alows an ORDER BY clause. This only makes sense in combination with ROWS,
but is also valid without it.

PLAN
Availablein: DSQL, PSQL
Added in: 2.0

Description: UPDATE now allowsaPLAN clause, so users can optimize the operation manually.

Relation alias makes real name unavailable

Changedin: 2.0

Description: If you give atable or view an aliasin aFirebird 2.0 or above statement, you must use the alias, not
the table name, if you want to qualify fields from that relation.

Examples:
Correct usage:
update Fruit set soort = 'pisang' where ...
update Fruit set Fruit.soort = 'pisang where ...
update Fruit F set soort = 'pisang' where ...
update Fruit F set F.soort = 'pisang' where ...

No longer possible:

update Fruit F set Fruit.soort = 'pisang' where ...

83

DML statements

RETURNING
Availablein: DSQL, PSQL
Addedin: 2.1

Description: An UPDATE statement modifying at most one row may optionally include a RETURNING clause
in order to return values from the updated row. The clause, if present, need not contain all the modified columns
and may also contain other columns or expressions. The returned values reflect any changes that may have been
made in BEFORE tiggers, but not those in AFTER triggers. OLD.f i el dname and NEW.f i el dnane may both
be used inthelist of columnsto return; for field names not preceded by either of these, the new valueisreturned.

Example:
updat e Schol ars
set firstname = 'Hugh', lastname = ' Pickering'
where firstnane = 'Henry' and | astname = 'Higgins'

returning id, old.lastnane, new. | astnane

Notes:

* In DSQL, a statement with a RETURNING clause always returns exactly one row. If no record was actually
updated, the fields in this row are all NULL. This behaviour may change in a later version of Firebird. In
PSQL, if no row was updated, nothing is returned, and the receiving variables keep their existing values.

ROWS
Availablein: DSQL, PSQL
Added in: 2.0
Description: Limits the amount of rows updated to a specified number or range.
Syntax:
ROA5 <> [TO <n>]
<nP, <n> ::= Any expression evaluating to an integer.

With a single argument m the update is limited to the first mrows of the dataset defined by the table or view
and the optional WHERE and ORDER BY clauses.

Points to note:

» |f m> thetotal number of rowsin the dataset, the entire set is updated.
* |f m=0, no rows are updated.
e |[f m<O, anerror israised.

With two arguments mand n, the update is limited to rows mto n inclusively. Row numbers are 1-based.
Points to note when using two arguments:

* If m> thetotal number of rows in the dataset, no rows are updated.

84

DML statements

» If mlieswithin the set but n doesn't, the rows from mto the end of the set are updated.
e Ifm<lorn<1,anerrorisraised.

e If n =m1, no rows are updated.

e If n<ml, anerrorisraised.

ROWS can aso be used with the SELECT and DELETE statements.

UPDATE OR INSERT

Tip

Find a more recent version at Firebird 5.0 Language Reference: UPDATE OR INSERT

Availablein: DSQL, PSQL
Addedin: 2.1

Description: UPDATE OR INSERT checks if any existing records already contain the new values supplied for
the MATCHING columns. If so, those records are updated. If not, a new record is inserted. In the absence of a
MATCHING clause, matching is done against the primary key. If aRETURNING clause is present and more than
one matching record is found, an error is raised.

Syntax:

UPDATE OR | NSERT | NTO
{tabl enane | viewnane} [(<colums>)]
VALUES (<val ues>)
[MATCHI NG (<col ums>)]
[RETURNI NG <val ues> [| NTO <vari abl es>]]

<col ums> = colnamre [, colname ...]
<val ues> = val ue [, value o]
<vari abl es> = :varname [, :varname ...]

Restrictions

« No column may appear more than once in the update/insert column list.

¢ |f thetable has no PK, the MATCHING clause becomes mandatory.

e The“INTO<vari abl es>" subclauseisonly availablein PSQL.

* When values are returned into the context variable NEW, this name must not be preceded by
acolon (“:).

Example:

update or insert into Cows (Nane, Nunber, Location)
val ues (' Suzy Creantheese', 3278823, 'G een Pastures')
mat chi ng (Nunber)
returning rec_id into :id;

Notes:

» Matchesaredetermined with ISNOT DISTINCT, not withthe® =" operator. Thismeansthat one NULL matches
another.

85

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml-update-or-insert.html

DML statements

* Theoptiona RETURNING clause:

- ..may contain any or all columns of the target table, regardless if they were mentioned earlier in the
statement, but also other expressions.

- ...may contain OLD and NEW qualifiersfor field names; by default, the new field valueis returned.

- ..returnsfield values as they are after the BEFORE triggers have run, but before any AFTER triggers.

86

Chapter 7

Transaction
control statements

Tip

Find amore recent version at Firebird 5.0 Language Reference: Transaction Control

RELEASE SAVEPOINT

Tip

Find amore recent version at Firebird 5.0 Language Reference: REL EASE SAVEPOINT

Availablein: DSQL

Added in: 1.5

Description: Deletes a named savepoint, freeing up all the resourcesit binds.
Syntax:

RELEASE SAVEPO NT nane [ONLY]

Unless ONLY is added, al the savepoints created after the named savepoint are released as well.

For afull discussion of savepoints, see SAVEPOINT.

ROLLBACK

Tip

Find amore recent version at Firebird 5.0 Language Reference: ROLLBACK

Availablein: DSQL, ESQL
Syntax:

ROLLBACK [WORK]
[TRANSACTI ON tr_nane]

87

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-transacs.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-transacs.html#fblangref50-transacs-releasesp
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-transacs.html#fblangref50-transacs-rollback

Transaction control statements

[RETAI N [SNAPSHOT] | TO [SAVEPO NT] sp_nane | RELEASE]
* The TRANSACTION clauseisonly availablein ESQL.
» The RELEASE clauseisonly availablein ESQL, and is discouraged.

e RETAIN and TO are only availablein DSQL.

ROLLBACK RETAIN
Availablein: DSQL
Addedin: 2.0

Description: Undoes al the database changes carried out in the transaction without closing it. User variables
set with RDB$SET_CONTEXT() remain unchanged.

Syntax:

ROLLBACK [WORK] RETAI N [SNAPSHOT]

Note

The functionality provided by ROLLBACK RETAIN has been present since InterBase 6, but the only way to
access it wasthroughthe API call i sc_rol | back_retai ni ng().

ROLLBACK TO SAVEPOINT
Availablein: DSQL
Added in: 1.5
Description: Undoes everything that happened in a transaction since the creation of the savepoint.
Syntax:
ROLLBACK [WORK] TO [SAVEPO NT] name
ROLLBACK TO SAVEPOINT performs the following operations:

» All the database mutations performed within the transaction since the savepoint was created are undone. User
variables set with RDBSSET_CONTEXT() remain unchanged.

» All savepoints created after the one named are destroyed. All earlier savepoints are preserved, as is the
savepoint itself. This means that you can rollback to the same savepoint several times.

» Allimplicit and explicit record locks acquired since the savepoint are released. Other transactions that have
reguested accessto rowslocked after the savepoint must continueto wait until the transaction is committed or
rolled back. Other transactions that have not already requested the rows can request and access the unlocked
rowsimmediately.

For afull discussion of savepoints, see SAVEPOINT.

88

Transaction control statements

SAVEPOINT

Tip

Find amore recent version at Firebird 5.0 Language Reference: SAVEPOINT

Availablein: DSQL
Addedin: 1.5

Description: Creates an SQL-99 compliant savepoint, to which you can later rollback your work without rolling
back the entire transaction. Savepoint mechanisms are also known as “nested transactions’.

Syntax:
SAVEPO NT <nane>

<nane> ::= a user-chosen identifier, unique within the transaction

If the supplied name exists aready within the same transaction, the existing savepoint is deleted and a new one
is created with the same name.

If you later want to rollback your work to the point where the savepoint was created, use:
ROLLBACK [WORK] TO [SAVEPO NT] nane

ROLLBACK TO SAVEPOINT performs the following operations:

 All the database mutations performed within the transaction since the savepoint was created are undone. User
variables set with RDBSSET_CONTEXT() remain unchanged.

» All savepoints created after the one named are destroyed. All earlier savepoints are preserved, as is the
savepoint itself. This means that you can rollback to the same savepoint several times.

» All implicit and explicit record locks acquired since the savepoint are released. Other transactions that have
requested accessto rowslocked after the savepoint must continue to wait until the transaction iscommitted or
rolled back. Other transactions that have not already requested the rows can regquest and access the unlocked
rows immediately.

The internal savepoint bookkeeping can consume huge amounts of memory, especialy if you update the same
records multiple timesin one transaction. If you don't need a savepoint anymore but you're not yet ready to end
the transaction, you can del ete the savepoint and free the resources it uses with:

RELEASE SAVEPO NT nane [ONLY]

With ONLY, the named savepoint is the only one that gets released. Without it, all savepoints created after it
arereleased as well.

Example DSQL session using a savepoint:

create table test (id integer);

89

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-transacs.html#fblangref50-transacs-savepoint

Transaction control statements

commi t;

insert into test values (1);
commi t;

insert into test values (2);
savepoint y;

delete fromtest;

select * fromtest; -- returns no rows
rol I back to v;

select * fromtest; -- returns two rows
rol | back;

select * fromtest; -- returns one row

Internal savepoints

By default, the engine uses an automatic transaction-level system savepoint to perform transaction rollback.
When you issue a ROLLBACK statement, al changes performed in this transaction are backed out via a
transaction-level savepoint and the transaction is then committed. This logic reduces the amount of garbage
collection caused by rolled back transactions.

When the volume of changes performed under a transaction-level savepoint is getting large (104—106 records
affected), the engine releases the transaction-level savepoint and uses the TIP mechanism to roll back the
transaction if needed.

Tip

If you expect the volume of changesin your transaction to be large, you can specify the NO AUTO UNDO option
inyour SET TRANSACTION statement, or —if you usethe APl —set the TPB flagi sc_t pb_no_aut o_undo.
Both prevent the creation of the transaction-level savepoint.

Savepoints and PSQL

Transaction control statements are not allowed in PSQL, as that would break the atomicity of the statement that
calls the procedure. But Firebird does support the raising and handling of exceptions in PSQL, so that actions
performed in stored procedures and triggers can be selectively undone without the entire procedure failing.
Internally, automatic savepoints are used to:

» undo dl actionsin aBEGIN...END block where an exception occurs;

» undo al actions performed by the SP/trigger (or, in the case of a selectable SP, al actions performed since
the last SUSPEND) when it terminates prematurely due to an uncaught error or exception.

Each PSQL exception handling block is also bounded by automatic system savepaints.

SET TRANSACTION

Tip

Find amore recent version at Firebird 5.0 Language Reference: SET TRANSACTION

Availablein: DSQL, ESQL

90

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-transacs.html#fblangref50-transacs-settransac

Transaction control statements

Changedin: 2.0
Description: Starts and optionally configures a transaction.
Syntax:

SET TRANSACTI ON
[NAME host var]
[READ VRI TE | READ ONLY]
[[1SOLATI ON LEVEL] { SNAPSHOT [TABLE STABI LI TY]
| READ COW TTED [[NO RECORD VERSI ON] }]
[WAIT | NO WAIT]
[LOCK TI MEQUT seconds]
[NO AUTO UNDQ
[1 GNORE LI MBO
[RESERVI NG <t abl es> | USI NG <dbhandl es>]

<t abl es> ;.= <table_spec> [, <table_spec> ...]

<t abl e_spec> tabl ename [, tablenane ...]

[FOR [SHARED | PROTECTED] {READ | WRI TE}]

dbhandl e [, dbhandle ...]

<dbhandl| es>

» The NAME option is only available in ESQL. It must be followed by a previously declared and
initialized host-language variable. Without NAME, SET TRANSACTION applies to the default
transaction.

» The USING optionisaso ESQL-only. It limits the databases that the transaction can access to the
ones mentioned here.

* IGNORE LIMBO and LOCK TIMEOUT are not supported in ESQL.
e LOCK TIMEOUT and NO WAIT are mutually exclusive.

» Default option settings are: READ WRITE + WAIT + SNAPSHOT.

IGNORE LIMBO
Availablein: DSQL
Addedin: 2.0

Description: With this option, records created by limbo transactions are ignored. Transactions are in limbo if
the second stage of a two-phase commit fails.

Note

IGNORE LIMBO surfacesthei sc_t pb_i gnor e_| i mbo TPB parameter, availableinthe API since InterBase
times and mainly used by gfix.

LOCK TIMEOUT

Availablein: DSQL

91

Transaction control statements

Added in: 2.0

Description: This option is only available for WAIT transactions. It takes a non-negative integer as argument,
prescribing the maximum number of seconds that the transaction should wait when alock conflict occurs. If the
the waiting time has passed and the lock has still not been released, an error is generated.

Note

This is a brand new feature in Firebird 2. Its APl equivalent is the new i sc_t pb_| ock_ti meout TPB
parameter.

NO AUTO UNDO
Availablein: DSQL, ESQL
Added in: 2.0

Description: With NO AUTO UNDO, the transaction refrains from keeping the log that is normally used to undo
changesin the event of arollback. Should the transaction be rolled back after all, other transactions will pick up
the garbage (eventually). This option can be useful for massive insertions that don't need to be rolled back. For
transactions that don't perform any mutations, NO AUTO UNDO makes no difference at all.

Note

NO AUTO UNDO is the SQL equivalent of thei sc_t pb_no_aut o_undo TPB parameter, available in the
API since InterBase times.

92

Chapter 8

PSQL statements

Tip

Find a more recent version at Firebird 5.0 L anguage Reference: Procedural SQL (PSQL) Statements

PSQL — Procedural SQL - is the Firebird programming language used in stored procedures, triggers and
executable blocks.

BEGIN ... END blocks may be empty

Tip

Find amore recent version at Firebird 5.0 Language Reference: BEGIN ... END

Availablein: PSQL
Changedin: 1.5

Description: BEGIN ... END blocks may be empty in Firebird 1.5 and up, allowing you to write stub code without
having to resort to dummy statements.

Example:

create trigger bi_atable for atable
active before insert position O

as

begi n

end

BREAK

Tip

Find amore recent version at Firebird 5.0 Language Reference: BREAK

Availablein: PSQL
Addedin: 1.0

Better alternative: LEAVE

Description: BREAK immediately terminates a WHILE or FOR loop and continues with the first statement after
the loop.

93

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-beginend
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-break

PSQL statements

Example:

create procedure sel phrase(numint)
returns (phrase varchar(40))

as
begi n
for select Phr from Phrases into phrase do
begi n
if (num< 1) then break
suspend;
num = num- 1;
end
phrase = '*** Ready! ***';
suspend;
end

This selectable SPreturns at most numrows from the table Phrases. The variable numis decremented
in each iteration; once it is smaller than 1, the loop is terminated with BREAK. The program then
continues at theline“phrase = ' *** Ready! ***';".

I mportant

Since Firebird 1.5, use of the SQL-99 compliant alternative LEAVE is preferred.

CLOSE cursor

Tip

Find a more recent version at Firebird 5.0 Language Reference: CLOSE

Availablein: PSQL
Added in: 2.0

Description: Closes an open cursor. Any cursors still open when the trigger, stored procedure or EXECUTE
BLOCK statement they belong to is exited, will be closed automatically.

Syntax:

CLCSE cur sor nane;

Example: See DECLARE ... CURSOR.

DECLARE

Tip

Find amore recent version at Firebird 5.0 Language Reference: DECLARE VARIABLE

Availablein: PSQL

94

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-close
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-declare-variable

PSQL statements

Description: Declares a PSQL local variable.
Syntax:

DECLARE [VARI ABLE] varnane <var_spec>

<var _spec> <type> [NOT NULL] [<coll>] [<default>]

| CURSOR FOR (sel ect-statenent)

<type> = sql _datatype | [TYPE OF] donmin
<col | > = COLLATE col l ation
<defaul t > = {=| DEFAULT} val ue

* If sgl _dat at ype isatext type, it may include a character set.

» Obviously, aCOLLATE clause is only alowed with text types.

DECLARE ... CURSOR

Tip

Find a more recent version at Firebird 5.0 Language Reference: DECLARE .. CURSOR

Added in: 2.0

Description: Declaresanamed cursor and bindsit to its own SELECT statement. The cursor can later be opened,
used to walk the result set, and closed again. Positioned updates and del etes (using WHERE CURRENT OF) are
also supported. PSQL cursors are available in triggers, stored procedures and EXECUTE BLOCK statements.

Example:

execut e bl ock
returns (relation char(31), sysflag int)
as
decl are cur cursor for
(sel ect rdb$rel ati on_name, rdb$systemflag from rdb$rel ations);
begi n
open cur;
while (1=1) do
begi n
fetch cur into relation, sysflag;
if (row_count = 0) then |eave;
suspend;
end
cl ose cur;
end

Notes:

* A “FOR UPDATE”" clauseis alowed in the SELECT statement, but not required for a positioned update or
delete to succeed.

» Make surethat declared cursor names do not clash with any names defined later onin AS CURSOR clauses.

 If you need a cursor to loop through an output set, it is almost always easier — and less error-prone — to use
a FOR SELECT statement with an AS CURSOR clause. Declared cursors must be explicitly opened, fetched
from, and closed. Furthermore, you need to check r ow_count after every fetch and break out of the loop

95

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-declare-cursor

PSQL statements

if it is zero. AS CURSOR takes care of all of that automagically. However, declared cursors give you more
control over the sequence of events, and allow you to operate several cursorsin parallel.

The SELECT statement may contain named SQL parameters, likein “sel ect nane || :sfx from
names where nunber = :nuni. Each parameter must be a PSQL variable that has been declared
previoudly (thisincludes any in/out params of the PSQL module). When the cursor is opened, the parameter
is assigned the current value of the variable.

Caution! If the value of a PSQL variable that is used in the SELECT statement changes during execution of
the loop, the statement may (but will not always) be re-evaluated for the remaining rows. In general, this
situation should be avoided. If you really need this behaviour, test your code thoroughly and make sure you
know how variable changes affect the outcome. Also be advised that the behaviour may depend on the query
plan, in particular the use of indices. As it is currently not strictly defined, it may change in some future
version of Firebird.

See also; OPEN cursor, FETCH cursor, CLOSE cursor

DECLARE [VARIABLE] with initialization

Changedin: 1.5

Description: InFirebird 1.5 and above, aPSQL local variable can beinitialized upon declaration. TheVARIABLE
keyword has become optional.

Example:

create procedure proccie (a int)
returns (b int)
as
declare p int;
declare q int = 8;
declare r int default 9;
declare variable s int;
declare variable t int = 10;
declare variable u int default 11;
begi n
<intelligent code here>
end

DECLARE with DOMAIN instead of datatype

Added in: 2.1

Description: In Firebird 2.1 and above, PSQL local variables and input/output parameters can be declared with
a domain instead of a datatype. The TYPE OF modifier allows using only the domain's datatype and not its
NOT NULL setting, CHECK constraint and/or default value. If the domain is of atext type, its character set and
collation are always included.

Example:

create procedure MyProc (a int, f ternbool)
returns (b int, x type of bigfloat)

as
declare p int;
declare q int = 8;

96

PSQL statements

decl are y stocknum default -1;
begi n

<very intelligent code here>
end

(This example presupposes that TERNBOOL, BIGFLOAT and STOCKNUM are domains already
defined in the database.)

Warning

If adomain'sdefinitionischanged, existing PSQL code using that domain may becomeinvalid. For information
on how to detect this, please read the note The RDB$VALID_BLR field, near the end of this document.

COLLATE in variable declaration

Added in: 2.1

Description: In Firebird 2.1 and above, aCOLLATE clause is alowed in the declaration of text-type PSQL local
variables and input/output parameters.

Example:

create procedure G nmeText
returns (txt char(32) character set utf8 collate unicode)

as
decl are simounao nytextdonmmin collate pt_br default 'néo';
begi n
<stunningly intelligent code here>
end

NOT NULL in variable declaration

Added in: 2.1

Description: In Firebird 2.1 and above, a NOT NULL constraint is allowed in the declaration of PSQL local
variables and input/output parameters.

Example:
create procedure Conpute(a int not null, b int not null)
returns (outconme bigint not null)
as
decl are tenp bigint not null;
begi n
<r at her di sappoi nting code here>
end
Tip

Find amore recent version at Firebird 5.0 Language Reference: EXCEPTION

97

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-handleexceptions.html#fblangref50-psql-exception

PSQL statements

Availablein: PSQL
Changedin: 1.5
Description: The EXCEPTION syntax has been extended so that the user can

a. Rethrow acaught exception or error.
b. Provide a custom message when throwing a user-defined exception.

Syntax:
EXCEPTI ON [<excepti on- nane> [cust om nessage]]

<exception-nane> ::= A previously defined exception nane

Rethrowing a caught exception

Within the exception handling block only, you can rethrow the caught exception or error by giving the
EXCEPTION command without any arguments. Outside such blocks, this“bare” command has no effect.

Example:
when any do
begi n
insert into error_log (...) values (sqglcode, ...);
excepti on;
end

This example first logs some information about the exception or error, and then rethrowsit.

Providing a custom error message

Firebird 1.5 and up alow you to override an exception's default error message by supplying an alternative one
when throwing the exception.

Examples:
exception ex _data error 'You just |ost sone val uable data';

exception ex_bad_type 'Wong type for record with id "' || new.id;

Note

Starting at version 2.0, the maximum message length is 1021 instead of 78 characters.

EXECUTE PROCEDURE

Tip

Find amore recent version at Firebird 5.0 Language Reference: EXECUTE PROCEDURE

98

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml-execproc.html

PSQL statements

Availablein: DSQL, PSQL
Changedin: 1.5
Description: In Firebird 1.5 and above, (compound) expressions are allowed as input parameters for stored

procedures called with EXECUTE PROCEDURE. See DML statements :: EXECUTE PROCEDURE for full info
and examples.

EXECUTE STATEMENT

Tip

Find amore recent version at Firebird 5.0 Language Reference: EXECUTE STATEMENT

Availablein: PSQL
Addedin: 1.5
Description: EXECUTE STATEMENT takes asingle string argument and executesit asif it had been submitted as

aDSQL statement. The exact syntax depends on the number of datarowsthat the supplied statement may return.

No data returned
Thisform is used with INSERT, UPDATE, DELETE and EXECUTE PROCEDURE statements that return no data.
Syntax:
EXECUTE STATEMENT <st at enent >
<statenment> ::= An SQ statenent returning no data.
Example:

create procedure Dynani cSanpl eOne (ProcNane varchar (100))
as

decl are variable stnm varchar(1024);

decl are variable paramint;

begi n
sel ect m n(SoneFi eld) from SonmeTabl e i nto param
stnt = 'execute procedure '

| | ProcNane
[
| | cast(param as varchar(20))
)
execute statement stnt;
end

Warning

Although thisform of EXECUTE STATEMENT can a so be used with all kinds of DDL strings (except CREATE/
DROP DATABASE), it is generally very, very unwise to use this trick in order to circumvent the no-DDL rule
in PSQL.

99

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-execstmt

PSQL statements

One row of data returned
Thisform is used with singleton SELECT statements.
Syntax:
EXECUTE STATEMENT <sel ect-statement> | NTO <var> [, <var> ...]

<sel ect - st at enent >

An SQ. statenent returning at nost one row of data.
<var > A

PSQ. variable, optionally preceded by “:”

Example:

create procedure Dynani cSanpl eTwo (Tabl eNane varchar (100))

as
decl are variable paramint;
begi n
execut e statenent
'sel ect max(CheckField) from' || Tabl eNane into :param
if (param > 100) then
exception Ex_Overflow 'Overflow in ' || Tabl eNaneg;
end

Any number of data rows returned

Thisform — analogous to “FOR SELECT ... DO” —is used with SELECT statements that may return a multi-row
dataset.

Syntax:

FOR EXECUTE STATEMENT <sel ect-statenment> | NTO <var> [, <var> ...]
DO <psql - st at enent >

<sel ect - st at enent >
<var >
<psql - st at enent >

Any SELECT st atenent.
A PSQ. variable, optionally preceded by “:”
A sinple or conmpound PSQ st atenent.

Example:

create procedure Dynani cSanpl eThree
(TextField varchar(100),
Tabl eNane var char (100))

returns
(LongLi ne varchar (32000))
as
decl are vari abl e Chunk varchar (100);
begi n
Chunk = '"';
for execute statenent
"select ' || TextField || ' from' || TableNane into : Chunk
do

if (Chunk is not null) then
LongLi ne = LongLine || Chunk || ' ';

100

PSQL statements

suspend;
end

Caveats with EXECUTE STATEMENT

1. Thereisno way to validate the syntax of the enclosed statement.
2. Thereare no dependency checks to discover whether tables or columns have been dropped.
3. Operationswill be slow because the embedded statement has to be prepared every timeit is executed.

4. The argument string cannot contain any parameters. All variable substitution into the static part of the
DSQL statement should be performed before EXECUTE STATEMENT is called.

5. Returnvaluesarestrictly checked for datatypein order to avoid unpredictabl e type-casting exceptions. For
example, thestring' 1234" would convert to an integer, 1234, but ' abc' would give aconversion error.

6. The submitted DSQL statement is always executed with the privileges of the current user. Privileges
granted to the trigger or SP that contains the EXECUTE STATEMENT statement are not in effect while the
DSQL statement runs.

All in al, thisfeature isintended only for very cautious use and you should always take the above factors into

account. Bottom line: use EXECUTE STATEMENT only when other methods are impossible, or perform even
worse than EXECUTE STATEMENT.

EXIT

Tip

Find amore recent version at Firebird 5.0 Language Reference: EXIT

Availablein: PSQL
Changedin: 1.5

Description: In Firebird 1.5 and up, EXIT can be used in all PSQL. In earlier versionsit is only supported in
stored procedures, not in triggers.

FETCH cursor

Tip

Find amore recent version at Firebird 5.0 Language Reference: FETCH

Availablein: PSQL

Added in: 2.0

101

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-exit
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-fetch

PSQL statements

Description: Fetchesthe next datarow from acursor'sresult set and storesthe column valuesin PSQL variables.
Syntax:

FETCH cursornane INTO [:]varnane [, [:]varnane ...];
Notes:

» The ROW _COUNT context variable will be 1 if the fetch returned a data row and O if the end of the set has
been reached.

* You can do apositioned UPDATE or DELETE on the fetched row with the WHERE CURRENT OF clause.

Example: See DECLARE ... CURSOR.

FOR EXECUTE STATEMENT ... DO

Tip

Find a more recent version at Firebird 5.0 Language Reference: FOR EXECUTE STATEMENT

Availablein: PSQL
Added in: 1.5

Description: See EXECUTE STATEMENT :: Any number of data rows returned.

FOR SELECT ... INTO ... DO

Tip

Find amore recent version at Firebird 5.0 Language Reference: FOR SELECT

Availablein: PSQL

Description: Executes a SELECT statement and retrieves the result set. In each iteration of the loop, the field
values of the current row are copied into local variables. Adding an AS CURSOR clause enables positioned
deletes and updates. FOR SELECT statements may be nested.

Syntax:
FOR <sel ect-stnt>
I NTO <var> [, <var> ...]
[AS CURSOR nane]

DO
<psqgl -stnt>

<select-stnt> ::= A valid SELECT statenent.

102

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-forexec
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-forselect

PSQL statements

<var >
<psql -stnt>

A PSQL vari able nane, optionally preceded by “:”
A single statement or a block of PSQ code

» The SELECT statement may contain named SQL parameters, likein“sel ect name || :sfx
from nanes where nunber = : nuni. Each parameter must be a PSQL variable that has
been declared previoudly (this includes any in/out params of the PSQL module).

» Caution! If the value of a PSQL variable that is used in the SELECT statement changes during
execution of the loop, the statement may (but will not always) be re-evaluated for the remaining
rows. In general, this situation should be avoided. If you really need this behaviour, test your code
thoroughly and make sure you know how variable changes affect the outcome. Also be advised
that the behaviour may depend on the query plan, in particular the use of indices. And as it is
currently not strictly defined, it may also change in some future version of Firebird.

Examples:

create procedure shownums
returns (aa int, bb int, smint, df int)
as
begi n
for select distinct a, b fromnnunbers order by a, b
into :aa, :bb

do
begi n
sm = aa + bb;
df = aa - bb;
suspend;
end
end

create procedure relfields
returns (relation char(32), pos int, field char(32))
as
begi n
for select rdb$relation_nane fromrdb$rel ati ons
into :relation
do
begin
for select rdb$field position + 1, rdb$field_nane
fromrdb$rel ation_fields
where rdb$rel ation_nane = :relation
order by rdb$field_position
into :pos, :field
do
begi n
if (pos = 2) then relation ="' "'; -- for nicer output
suspend;
end
end
end

AS CURSOR clause
Availablein: PSQL
Added in: IB

103

PSQL statements

Description: The optional AS CURSOR clause creates a named cursor that can be referenced (after WHERE
CURRENT OF) within the FOR SELECT loop in order to update or delete the current row. Thisfeature was already
added in InterBase, but not mentioned in the Language Reference.

Example:

create procedure deltown (towntodel ete varchar(24))
returns (town varchar(24), pop int)

as
begi n
for select town, pop fromtowns into :town, :pop as cursor tcur do
begin
if (town = towntodel ete)
then delete fromtowns where current of tcur;
el se suspend;
end
end
Notes:

* A “FOR UPDATE" clauseis allowed in the SELECT statement., but not required for a positioned update or
delete to succeed.

» Make sure that cursor names defined here do not clash with any names created earlier on in DECLARE
CURSOR statements.

* AS CURSOR is not supported in FOR EXECUTE STATEMENT loops, even if the statement to execute is a
suitable SELECT query.

LEAVE

Tip

Find a more recent version at Firebird 5.0 Language Reference: LEAVE

Availablein: PSQL

Added in: 1.5

Changedin: 2.0

Description: LEAVE immediately terminates the innermost WHILE or FOR loop. With the optional | abel
argument introduced in Firebird 2.0, LEAVE can break out of surrounding loops as well. Execution continues

with the first statement after the outermost terminated loop.

Syntax:

[1abel:]
{FOR | WHLE ... DO

(possi bly nested | oops, with or wthout I|abels)

104

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-leave

PSQL statements

LEAVE [I abel];
Example:

If an error occurs during the insert in the example below, the event islogged and the loop terminated.
The program continues at the line of codereading“c = 0;”

while (b < 10) do
begi n
insert into Nunmbers(B) values (:b);
b=Db+ 1;
when any do
begi n
execute procedure log_error (current_timestanp, '"Error in B |oop');
| eave;
end
end
c = 0;

The next example uses labels. “Leave LoopA’ terminates the outer loop, “| eave LoopB’ the
inner loop. Notice that aplain “l eave” would also suffice to terminate the inner loop.

stm1l = 'select Name from Farns';
LoopA:
for execute statenent :stml into :farmdo
begi n
stnt2 = 'select Name from Animal s where Farm=""";
LoopB:
for execute statenment :stm?2 || :farm|]|] '"'' into :animl do
begi n
if (animal = "Fluffy') then | eave LoopB
else if (animal = farn) then | eave LoopA;
el se suspend,;
end
end

OPEN cursor

Tip

Find amore recent version at Firebird 5.0 Language Reference: OPEN

Availablein: PSQL
Added in: 2.0

Description: Opensapreviously declared cursor, executing its SELECT statement and enabling it to fetch records
from the result set.

Syntax:

OPEN cur sor nane;

Example: See DECLARE ... CURSOR.

105

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-open

PSQL statements

PLAN allowed in trigger code

Changedin: 1.5

Description: Before Firebird 1.5, atrigger containing aPLAN statement would be rejected by the compiler. Now
avalid plan can be included and will be used.

UDFs callable as void functions

Changedin: 2.0

Description: In Firebird 2.0 and above, PSQL code may call UDFswithout assigning the result value, i.e. likea
Pascal procedure or C void function. In most cases this is senseless, because the main purpose of ailmost every
UDF isto produce the result value. Some functions however perform a specific task, and if you're not interested
in the result value you can now spare yourself the trouble of assigning it to adummy variable.

Note

RDB$CGET_CONTEXT and RDB$SET_CONTEXT, though classified in this guide under internal functions, are
actually akind of auto-declared UDFs. Y ou may therefore call them without catching the result. Of course this
only makes sense for RDB$SET_CONTEXT.

WHERE CURRENT OF valid again for view cursors

Changedin: 2.0, 2.1

Description: Because of possible reliability issues, Firebird 2.0 disallowed WHERE CURRENT OF for view
cursors. In Firebird 2.1, with itsimproved view validation logic, this restriction has been lifted.

106

Chapter 9

Context variables

Tip

Find a more recent version at Firebird 5.0 Language Reference: Context Variables

CURRENT_CONNECTI ON

Tip

Find a more recent version at Firebird 5.0 Language Reference: CURRENT _CONNECTION

Availablein: DSQL, PSQL
Added in: 1.5
Changedin: 2.1
Description: CURRENT _CONNECTI ON contains the unique identifier of the current connection.
Type: INTEGER
Examples:
sel ect current _connection from rdb$dat abase
execut e procedure P_Logi n(current_connecti on)

The value of CURRENT_CONNECTI ONis stored on the database header page and reset to 0 upon restore. Since
version 2.1, it isincremented upon every new connection. (In previous versions, it was only incremented if the
client read it during a session.) As aresult, CURRENT_CONNECTI ON now indicates the number of connections
since the creation — or most recent restoration — of the database.

CURRENT ROLE

Tip

Find amore recent version at Firebird 5.0 Language Reference: CURRENT ROLE

Availablein: DSQL, PSQL

Addedin: 1.0

107

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars.html#fblangref50-contextvars-current-connection
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-current-role.html

Context variables

Description: CURRENT _ROLE is a context variable containing the role of the currently connected user. If there
isno active role, CURRENT _RCOLE is NONE.

Type: VARCHAR(31)
Example:
if (current_role <> ' MANAGER)
then exception only_nanagers_nay_del et e;

el se
del ete from Custoners where custno = :custno;

CURRENT _ROLE awaysrepresentsavalid role or NONE. If auser connects with anon-existing role, the engine
silently resetsit to NONE without returning an error.

CURRENT _TI ME

Tip

Find amore recent version at Firebird 5.0 Language Reference: CURRENT TIME

Availablein: DSQL, PSQL, ESQL
Changed in: 2.0

Description: CURRENT _TI MVE returns the current server time. In versions prior to 2.0, the fractional part used
to be dways“. 0000”, giving an effective precision of 0 decimals. From Firebird 2.0 onward you can specify
aprecision when polling this variable. The default is still O decimals, i.e. seconds precision.

Type: TIME
Syntax:

CURRENT_TI ME [(precision)]

precision ::= 0] 1] 2] 3

The optional pr eci si on argument is not supported in ESQL.
Examples:

select current _time fromrdb$dat abase
-- returns e.g. 14:20:19.6170

select current _tinme(2) fromrdb$dat abase
-- returns e.g. 14:20:23.1200

Notes:

» Unlike CURRENT _TI ME, the default precision of CURRENT _TI MESTAMP has changed to 3 decimals. Asa
result, CURRENT _TI MESTAMP isno longer the exact sum of CURRENT _DATE and CURRENT _TI ME, unless
you explicitly specify aprecision.

* Within a PSQL module (procedure, trigger or executable block), the value of CURRENT _TI ME will remain
constant every timeit is read. If multiple modules call or trigger each other, the value will remain constant

108

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-current-time.html

Context variables

throughout the duration of the outermost module. If you need a progressing value in PSQL (e.g. to measure
timeintervals), use' NOW .

CURRENT _TI MESTAMP

Tip

Find amore recent version at Firebird 5.0 Language Reference: CURRENT TIMESTAMP

Availablein: DSQL, PSQL, ESQL
Changed in: 2.0

Description: CURRENT_TI MESTAMP returns the current server date and time. In versions prior to 2.0, the
fractional part usedto beaways*”. 0000", giving an effective precision of 0 decimals. From Firebird 2.0 onward
you can specify a precision when polling this variable. The default is 3 decimals, i.e. milliseconds precision.

Type: TIMESTAMP
Syntax:

CURRENT_TI MESTAMP [(preci sion)]

precision ::= 0] 1] 2] 3

The optional pr eci si on argument is not supported in ESQL.
Examples:

sel ect current _tinestanp fromrdb$dat abase
-- returns e.g. 2008-08-13 14:20:19.6170

sel ect current _tinmestanp(2) from rdb$dat abase
-- returns e.g. 2008-08-13 14:20:23.1200

Notes:

 The default precision of CURRENT_TIME is «ill O decimals, so in Firebird 2.0 and up
CURRENT _TI MESTAMP is no longer the exact sum of CURRENT _DATE and CURRENT _TI ME, unless you
explicitly specify aprecision.

» Within a PSQL module (procedure, trigger or executable block), the value of CURRENT _TI MESTAMP will
remain constant every time it is read. If multiple modules call or trigger each other, the value will remain
constant throughout the duration of the outermost module. If you need a progressing value in PSQL (e.g. to
measure time intervals), use' NOW .

CURRENT _TRANSACTI ON

Tip

Find amore recent version at Firebird 5.0 Language Reference: CURRENT TRANSACTION

109

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-current-timestamp.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-current-transaction.html

Context variables

Availablein: DSQL, PSQL
Added in: 1.5
Description: CURRENT _TRANSACTI ON contains the unique identifier of the current transaction.
Type: INTEGER
Examples:
sel ect current _transaction from rdb$dat abase

New. Txn_I D = current _transacti on;

The value of CURRENT _TRANSACTI ON is stored on the database header page and reset to O upon restore. It
isincremented with every new transaction.

CURRENT _USER

Tip

Find amore recent version at Firebird 5.0 Language Reference: CURRENT USER

Availablein: DSQL, PSQL
Added in: 1.0

Description: CURRENT _USER is a context variable containing the name of the currently connected user. It is
fully equivalent to USER.

Type: VARCHAR(31)

Example:
create trigger bi_custoners for custonmers before insert as
begi n
New. added_by = CURRENT_USER,
New. pur chases = O0;
end
Tip

Find a more recent version at Firebird 5.0 Language Reference: DELETING

Availablein: PSQL
Addedin: 1.5

Description: Availableintriggersonly, DELETI NGindicatesif the trigger fired because of a DELETE operation.
Intended for use in multi-action triggers.

110

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-current-user.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-deleting.html

Context variables

Type: boolean
Example:

if (deleting) then
begi n
insert into Removed_Cars (id, nake, nodel, renoved)

val ues (old.id, old. make, old.nodel, current_timestanp);
end

GDSCODE

Tip

Find amore recent version at Firebird 5.0 Language Reference: GDSCODE

Availablein: PSQL
Added in: 1.5
Changedin: 2.0

Description: In a“WHEN ... DO” error handling block, the GDSCCODE context variable contains the numerical
representation of the current Firebird error code. Prior to Firebird 2.0, GDSCODE was only set in WHEN
GDSCODE handlers. Now it may also be non-zero in WHEN ANY, WHEN SQLCODE and WHEN EXCEPTION
blocks, provided that the condition raising the error corresponds with a Firebird error code. Outside error

handlers, GDSCCODE is always 0. Outside PSQL it doesn't exist at al.
Type: INTEGER

Example:

when gdscode grant _obj notfound, gdscode grant_fl d_notfound,
gdscode grant_nopriv, gdscode grant_nopriv_on_base
do
begi n
execute procedure |og_grant_error(gdscode);
exit;
end

Please notice: After WHEN GDSCODE, you must use symbolic names like grant_obj _notfound etc. But the
GDSCCDE context variableisan INTEGER. If you want to compare it against a certain error, you haveto use the

numeric value, e.g. 335544551 for grant_obj_notfound.

| NSERTI NG

Tip

Find a more recent version at Firebird 5.0 Language Reference: INSERTING

Availablein: PSQL

111

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-gdscode.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-inserting.html

Context variables

Added in: 1.5

Description: Available in triggers only, | NSERTI NG indicates if the trigger fired because of an INSERT
operation. Intended for use in multi-action triggers.

Type: boolean
Example:
if (inserting or updating) then
begi n
if (new.serial_numis null) then

new. seri al _num = gen_id(gen_serials, 1);
end

NEW

Tip

Find amore recent version at Firebird 5.0 Language Reference: NEW

Availablein: PSQL, triggers only
Changedin: 1.5, 2.0

Description: NEWcontains the new version of a database record that has just been inserted or updated. Starting
with Firebird 2.0 it isread-only in AFTER triggers.

Type: Datarow

Note

In multi-action triggers — introduced in Firebird 1.5 — NEWis always available. But if the trigger is fired by
a DELETE, there will be no new version of the record. In that situation, reading from NEWwill always return
NULL; writing to it will cause aruntime exception.

" NOW

Tip

Find amore recent version at Firebird 5.0 Language Reference: 'NOW!

Availablein: DSQL, PSQL, ESQL
Changedin: 2.0

Description: ' NOW isnot avariablebut astring literal. It is, however, special in the sense that when you CAST()
it to adate/time type, you will get the current date and/or time. The fractional part of the time used to be always
“. 0000”, giving an effective seconds precision. Since Firebird 2.0 the precision is 3 decimals, i.e. milliseconds.
" NOW iscase-insensitive, and the engine ignores leading or trailing spaces when casting.

112

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-new.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-now.html

Context variables

Type: CHAR(3)
Examples:

sel ect ' Now from rdb$dat abase
-- returns ' Now

sel ect cast('Now as date) from rdb$dat abase
-- returns e.g. 2008-08-13

sel ect cast('now as tine) fromrdb$dat abase
-- returns e.g. 14:20:19.6170

sel ect cast('NOW as tinmestanp) from rdb$database
-- returns e.g. 2008-08-13 14:20:19.6170

Shorthand syntax for the last three statements:

sel ect date ' Now from rdb$dat abase
select tine 'now fromrdb$dat abase
sel ect tinestanp ' NOW from rdb$dat abase

Notes:

e 'NOW aways returns the actua date/time, even in PSQL modules, where CURRENT_ DATE,
CURRENT_TI ME and CURRENT_TI MESTAMP return the same value throughout the duration of the
outermost routine. This makes ' NOW useful for measuring time intervals in triggers, procedures and
executabl e blocks.

e Except in the situation mentioned above, reading CURRENT DATE, CURRENT_TIME and
CURRENT _TI MESTAMP is generally preferable to casting ' NOW . Be aware though that CURRENT _TI ME
defaults to seconds precision; to get milliseconds precision, use CURRENT _TI VE(3).

OLD

Tip

Find amore recent version at Firebird 5.0 Language Reference: OLD

Availablein: PSQL, triggers only
Changedin: 1.5, 2.0

Description: OLD contains the existing version of a database record just before a deletion or update. Starting
with Firebird 2.0 it isread-only.

Type: Datarow

Note

In multi-action triggers — introduced in Firebird 1.5 — QLD is aways available. But if the trigger is fired by
an INSERT, there is obviously no pre-existing version of the record. In that situation, reading from OLD will
aways return NULL; writing to it will cause a runtime exception.

113

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-old.html

Context variables

ROW COUNT

Tip

Find amore recent version at Firebird 5.0 Language Reference: ROW_COUNT

Availablein: PSQL
Addedin: 1.5
Changedin: 2.0

Description: The ROW COUNT context variable contains the number of rows affected by the most recent DML
statement (INSERT, UPDATE, DELETE, SELECT or FETCH) inthe current trigger, stored procedure or executable
block.

Type: INTEGER
Example:
update Figures set Nunber = 0 where id = :id;
if (row_count = 0) then
insert into Figures (id, Nunber) values (:id, 0);
Behaviour with SELECT and FETCH:
» After asingleton SELECT, ROW COUNT is 1 if adatarow was retrieved and O otherwise.

* InaFOR SELECT loop, ROW COUNT isincremented with every iteration (starting at O before the first).

e After aFETCH from a cursor, RON COUNT is 1 if adatarow was retrieved and 0 otherwise. Fetching more
records from the same cursor does not increment ROV COUNT beyond 1.

* InFirebird 1.5.x, ROW COUNT is 0O after any type of SELECT statement.

Note

ROW COUNT cannot be used to determine the number of rows affected by an EXECUTE STATEMENT or
EXECUTE PROCEDURE command.

SQLCODE

Tip

Find amore recent version at Firebird 5.0 Language Reference: SQLCODE

Availablein: PSQL

Added in: 1.5

114

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-row-count.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-sqlcode.html

Context variables

Changedin: 2.0

Description: Ina“WHEN ... DO” error handling block, the SQL CODE context variable contains the current SQL
error code. Prior to Firebird 2.0, SQLCODE was only set in WHEN SQLCODE and WHEN ANY handlers. Now it
may also be non-zero in WHEN GDSCODE and WHEN EXCEPTION blocks, provided that the condition raising

the error corresponds with an SQL error code. Outside error handlers, SQLCODE is aways 0. Outside PSQL
it doesn't exist at all.

Type: INTEGER
Example:

when any
do
begi n
if (sqglcode <> 0) then
Msg = ' An SQL error occurred!';
el se
Msg = ' Sonet hi ng bad happened!';
excepti on ex_custom Msg;
end

UPDATI NG

Tip

Find amore recent version at Firebird 5.0 Language Reference: UPDATING

Availablein: PSQL
Addedin: 1.5

Description: Available in triggers only, UPDATI NG indicates if the trigger fired because of an UPDATE
operation. Intended for use in multi-action triggers.

Type: boolean
Example:

if (inserting or updating) then
begi n
if (new. serial_numis null) then
new. seri al _num = gen_id(gen_serials, 1);
end

115

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-updating.html

Chapter 10

Operators and predicates

Tip

Find a more recent version at Firebird 5.0 L anguage Reference: Common L anguage Elements

NULL literals allowed as operands

Changedin: 2.0

Description: Before Firebird 2.0, most operators and predicates did not allow NULL literals as operands. Tests
or operations like “A <> NULL”,“B + NULL” or “NULL < ANY(...)” would be rejected by the parser.
Now they are allowed almost everywhere, but please be aware of the following:

The vast majority of these newly allowed expressions return NULL regardless of the state or value of
the other operand, and are therefore worthless for any practicle purpose whatsoever.

In particular, don't try to determine (non-)nuliness of a field or variable by testing with “= NULL” or “<>
NULL”. Alwaysuse“l S [NOT] NULL”".

Predicates: The IN, ANY/SOME and ALL predicates now also allow NULL literals where they were previously
taboo. Here too, there is no practical benefit to enjoy, but the situation is a little more complicated in that
predicates with NULLs do not always return a NULL result. For details, see the Firebird Null Guide, section
Predicates.

|| (string concatenator)

Tip

Find amore recent version at Firebird 5.0 L anguage Reference. Concatenation Operator

Availablein: DSQL, ESQL, PSQL

Text BLOB concatenation
Changedin: 2.1
Description: Since Firebird 2.1 the concatenation operator supports BLOBs of any length and any character set.

If a mixture of BLOBs and non-BLOBSs is involved, the result is a BLOB. If both text and binary BLOBS are
involved, the result is abinary BLOB.

116

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons.html
http://www.firebirdsql.org/manual/nullguide-predicates.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons.html#fblangref50-commons-concat

Operators and predicates

Result type VARCHAR or BLOB
Changedin: 2.0, 2.1

Description: Before Firebird 2.0, the result type of string concatenations used to be CHAR(n). In Firebird 2.0
thiswas changed to VARCHAR(N). As aresult, the maximum length of a concatenation outcome became 32765
instead of 32767. In Firebird 2.1 and up, if at least one of the operands is a BLOB, the result is a'so a BLOB
and the maximum doesn't apply. For non-BLOB concatenationsthe result is still VARCHAR(n) with amaximum
of 32765 bytes.

Overflow checking
Changedin: 1.0, 2.0

Description: In Firebird versions 1.x, an error would be raised if the sum of the declared string lengths in a
concatenation exceeded 65535 bytes, even if the actual result lay within the maximum string length of 32767
bytes. In Firebird 2.0 and up, the declared string lengths will never cause an error. Only if the actual outcome
exceeds 32765 bytes (the new limit for concatenation results) will an error be raised.

ALL

Tip

Find a more recent version at Firebird 5.0 Language Reference: ALL

Availablein: DSQL, ESQL, PSQL

NULL literals allowed
Changedin: 2.0

Description: The ALL predicate now allowsaNULL asthetest value. Noticethat thisbrings no practical benefits.
In particular, a NULL test value will not be considered equal to NULLs in the subquery result set. Even if the
entire set isfilled with NULLs and the operator chosen is =", the predicate will not returnt r ue, but NULL.

UNION as subselect
Changedin: 2.0

Description: The subselect in an ALL predicate may now also be a UNION.

ANY / SOME

Tip

Find amore recent version at Firebird 5.0 Language Reference: ANY and SOME

117

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons-predicates.html#fblangref50-commons-quant-all
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons-predicates.html#fblangref50-commons-quant-anysome

Operators and predicates

Availablein: DSQL, ESQL, PSQL

NULL literals allowed
Changedin: 2.0
Description: The ANY (or SOME) predicate now alows a NULL as the test value. Notice that this brings no

practical benefits. In particular, aNULL test value will not be considered equal to a NULL in the subguery result
Set.

UNION as subselect
Changedin: 2.0

Description: The subselect in an ANY (or SOME) predicate may now also be a UNION.

IN

Tip

Find amore recent version at Firebird 5.0 Language Reference: IN

Availablein: DSQL, ESQL, PSQL

NULL literals allowed

Changedin: 2.0

Description: The IN predicate now allows NULL literals, both as the test value and in the list. Notice that this
brings no practical benefits. In particular, “NULL IN (..., NULL, ..., ...)" will not returnt r ue and “NULL NOT
IN (..., NULL, ..., ...)" will not returnf al se.

UNION as subselect
Changedin: 2.0

Description: A subselect in an IN predicate may now also be a UNION.

IS [NOT] DISTINCT FROM

Tip

Find amore recent version at Firebird 5.0 Language Reference: IS[NOT] DISTINCT FROM

Availablein: DSQL, PSQL

118

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons-predicates.html#fblangref50-commons-in
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons-predicates.html#fblangref50-commons-isnotdistinct

Operators and predicates

Added in: 2.0

Description: Two operands are considered DISTINCT if they have a different value or if one of them is NULL
and the other isn't. They are NOT DISTINCT if they have the same value or if both of them are NULL.

Result type: Boolean
Syntax:

opl IS [NOT] DI STI NCT FROM op2
Examples:

sel ect id, nanme, teacher from courses
where start_day is not distinct fromend_day

if (New. Job is distinct from d d. Job)
t hen post_event 'job_changed';

IS[NOT] DISTINCT FROM awaysreturnst r ue or f al se, never NULL (unknown). The“=" and “<>" operators,
by contrast, return NULL if one or both operands are NULL. See also the table below.

Table 10.1. Comparison of [NOT] DISTINCT to“=" and “<>"

Operand Resultswith the different operators
characteristics
= NOT DISTINCT <> DISTINCT
Same value true true fal se fal se
Different values fal se fal se true true
Both NULL NULL true NULL fal se
One NULL NULL fal se NULL true

NEXT VALUE FOR

Tip

Find a more recent version at Firebird 5.0 Language Reference: NEXT VALUE FOR

Availablein: DSQL, PSQL
Added in: 2.0

Description: Returns the next value in a sequence. SEQUENCE is the SQL-compliant term for what InterBase
and Firebird have aways called a generator. NEXT VALUE FOR is fully equivalent to GEN_ID(..., 1) and is the
recommended syntax from Firebird 2.0 onward.

Syntax:

NEXT VALUE FOR sequence- nane

119

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons.html#fblangref50-commons-nxtvlufor

Operators and predicates

Example:
new. cust _id = next value for custseq;

NEXT VALUE FOR doesn't support increment values other than 1. If you absolutely need other step values, use
the legacy GEN_ID function.

See also; CREATE SEQUENCE, GEN_ID()

SOME

See ANY

120

Chapter 11

Aggregate functions

Tip

Find a more recent version at Firebird 5.0 Language Reference: Aggregate Functions

Aggregate functions operate on groups of records, rather than on individual records or variables. They are often
used in combination with a GROUP BY clause.

LIST()

Tip

Find amore recent version at Firebird 5.0 Language Reference: LIST()

Availablein: DSQL, PSQL
Addedin: 2.1

Changedin: 2.1.4

Description: LIST returns a string consisting of the non-NULL argument values in the group, separated either
by a comma or by a user-supplied delimiter. If there are no non-NULL values (this includes the case where the
group isempty), NULL is returned.

Result type: BLOB

Syntax:
LI ST ([ALL | DI STINCT] expression [, separator])

e ALL (the default) results in al non-NULL values to be listed. With DISTINCT, duplicates are
removed, except if expr essi on isaBLOB.

» Theoptional separ at or argument may be a string literal, a parameter or avariable in versions
up to 2.1.3. Starting at 2.1.4 it may be any string expression (a backport from 2.5). This makes it
possibleto specify e.g. asci i _char (13) asaseparator.

» Theexpressi on and separ at or arguments support BLOBS of any size and character set.
» Date/time and numerical arguments are implicitly converted to strings before concatenation.
» Theresult isatext BLOB, except when expr essi on isaBLOB of another subtype.

» Theordering of the list valuesis undefined.

121

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-aggfuncs.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-aggfuncs-general.html#fblangref50-aggfuncs-list

Aggregate functions

Bug

In versions 2.1-2.1.3, the last part of the result is sometimes truncated. With a single-row set, this happens
when the length gets somewhere above 4000. As the number of rows grows, the threshold climbs rapidly, so
in practice this bug might not raise its head very often. It isfixed in 2.1.4.

MAX()

Tip

Find a more recent version at Firebird 5.0 Language Reference: MAX()

Availablein: DSQL, ESQL, PSQL
Addedin: IB
Changedin: 2.1

Description: MAX returns the maximum argument value in the group. If the argument is a string, this is the
value that comes last when the active collation is applied.

Result type: Varies

Syntax:
MAX (expr essi on)
 If thegroup is empty or contains only NULLS, the result isNULL.

» Since Firebird 2.1, this function fully supports text BLOBs of any size and character set.

MIN()

Tip

Find a more recent version at Firebird 5.0 L anguage Reference: MIN()

Availablein: DSQL, ESQL, PSQL
Added in: IB
Changedin: 2.1

Description: MIN returns the minimum argument value in the group. If the argument isastring, thisisthe value
that comes first when the active collation is applied.

Result type: Varies

Syntax:

M N (expression)

122

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-aggfuncs-general.html#fblangref50-aggfuncs-max
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-aggfuncs-general.html#fblangref50-aggfuncs-min

Aggregate functions

» If the group is empty or contains only NULLS, the result isNULL.

» SinceFirebird 2.1, this function fully supports text BLOBs of any size and character set.

123

Chapter 12

Internal functions

Tip

Find amore recent version at Firebird 5.0 Language Reference: Built-in Scalar Functions

ABS()

Tip

Find amore recent version at Firebird 5.0 Language Reference: ABS()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns the absolute value of the argument.
Result type: Numerical

Syntax:

ABS (nunber)

Important

If the external function ABS is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

ACOS()

Tip

Find amore recent version at Firebird 5.0 Language Reference: ACOS()

Availablein: DSQL, PSQL
Addedin: 2.1
Description: Returns the arc cosine of the argument.

Result type: DOUBLE PRECISION

124

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-math.html#fblangref50-scalarfuncs-abs
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-math.html#fblangref50-scalarfuncs-acos

Internal functions

Syntax:

ACCS (nunber)

* Theresultisan angleintherange [0, #].

 If theargument is outside the range [-1, 1], NaN is returned.

I mportant

If the external function ACCS is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

ASCIl_CHAR()

Tip

Find amore recent version at Firebird 5.0 Language Reference: ASCII CHAR()

Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns the ASCII character corresponding to the number passed in the argument.
Result type: [VAR]CHAR(1) CHARACTER SET NONE
Syntax:
ASCl | _CHAR (<code>)

<code> ::= an integer in the range [0..255]

I mportant

 If theexternal function ASCl | _CHARisdeclared in your database, it will override the internal function. To
make the internal function available, DROP or ALTER the external function (UDF).

. If you are used to the behavlour of the ASCI | _CHAR UDF, which returns an empty strmg if the argument

ASCIl_VAL()

Tip

Find amore recent version at Firebird 5.0 Language Reference: ASCII VAL()

Availablein: DSQL, PSQL
Addedin: 2.1

125

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-ascii-char
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-ascii-val

Internal functions

Description: Returns the ASCII code of the character passed in.
Result type: SMALLINT
Syntax:
ASCI | _VAL (ch)
ch ::= a [VARJCHAR or text BLOB of max. 32767 bytes

 If the argument is a string with more than one character, the ASCII code of the first character is
returned.

 If theargument is an empty string, O is returned.
» If theargument is NULL, NULL is returned.

» If thefirst character of the argument string is multi-byte, an error israised. (A bugin Firebird 2.1—
2.1.3 causes an error to beraised if any character in the string is multi-byte. Thisisfixedin 2.1.4.)

I mportant

If theexternal function ASCI | _ VAL isdeclaredin your database, it will overridetheinternal function. To make
the internal function available, DROP or ALTER the external function (UDF).

ASIN()

Tip

Find amore recent version at Firebird 5.0 Language Reference: ASIN()

Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns the arc sine of the argument.
Result type: DOUBLE PRECISION
Syntax:
ASI N (nunber)
* Theresultisan anglein the range [-#/2, #/2].

 |f theargument is outside the range [-1, 1], NaN is returned.

Important

If the external function ASI N is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

126

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-math.html#fblangref50-scalarfuncs-asin

Internal functions

ATAN()

Tip

Find amore recent version at Firebird 5.0 Language Reference: ATAN()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns the arc tangent of the argument.
Result type: DOUBLE PRECISION

Syntax:

ATAN (nunber)

* Theresult isan angle in the range <-#/2, #/2>.

I mportant

If the external function ATAN is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

ATAN2()

Tip

Find amore recent version at Firebird 5.0 Language Reference: ATAN2()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the angle whose sine-to-cosine ratio is given by the two arguments, and whose sine and
cosine signs correspond to the signs of the arguments. This allows results across the entire circle, including the
angles -#/2 and #/2.
Result type: DOUBLE PRECISION
Syntax:

ATAN2 (y, X)

» Theresult isan anglein the range [-#, #].

» If x isnegative, theresultis#if y isO, and -#if y is-0.

127

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-math.html#fblangref50-scalarfuncs-atan
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-math.html#fblangref50-scalarfuncs-atan2

Internal functions

» If bothy and x are 0, the result is meaningless. Starting with Firebird 3 (1), an error will be raised
if both arguments are 0.

I mportant

If the external function ATANZ is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

Notes:

» A fully equivalent description of thisfunctionisthefollowing: ATAN2(y, x) isthe angle between the positive
X-axis and the line from the origin to the point (x, y). This also makes it obvious that ATAN2(O, 0) is
undefined.

* If x isgreater than 0, ATAN2(y, x) isthe same as ATAN(y/x).

 If both sine and cosine of the angle are already known, ATAN2(si n, cos) givesthe angle.

BIN_AND()

Tip

Find a more recent version at Firebird 5.0 L anguage Reference: BIN_AND()

Availablein: DSQL, PSQL

Addedin: 2.1

Description: Returns the result of the bitwise AND operation on the argument(s).
Result type: INTEGER or BIGINT

Syntax:

BI N_AND (number [, nunber ...])

I mportant

If the external function Bl N_AND is declared in your database, it will override the internal function. To make
theinternal function available, DROP or ALTER the external function (UDF).

BIN_OR()

Tip

Find amore recent version at Firebird 5.0 L anguage Reference: BIN_OR()

Availablein: DSQL, PSQL

128

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-bitwise.html#fblangref50-scalarfuncs-bin-and
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-bitwise.html#fblangref50-scalarfuncs-bin-or

Internal functions

Added in: 2.1

Description: Returns the result of the bitwise OR operation on the argument(s).
Result type: INTEGER or BIGINT
Syntax:

BIN_ OR (nunber [, nunber ...])

I mportant

If the external function BI N_OR is declared in your database, it will override the internal function. To make
theinternal function available, DROP or ALTER the external function (UDF).

BIN_SHL()

Tip

Find a more recent version at Firebird 5.0 L anguage Reference: BIN_SHL ()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the first argument bitwise left-shifted by the second argument, i.e. a << b or a-2"b.

Result type: BIGINT

Syntax:

BI N SHL (nunber, shift)

BIN_SHR()

Tip

Find amore recent version at Firebird 5.0 Language Reference: BIN _SHR()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns the first argument bitwise right-shifted by the second argument, i.e. a >> b or a/2"b.
Result type: BIGINT

Syntax:

BI N_SHR (nunber, shift)

129

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-bitwise.html#fblangref50-scalarfuncs-bin-shl
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-bitwise.html#fblangref50-scalarfuncs-bin-shr

Internal functions

» The operation performed is an arithmetic right shift (SAR), meaning that the sign of the first
operand is always preserved.

BIN_XOR()

Tip

Find amore recent version at Firebird 5.0 Language Reference: BIN_XOR()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns the result of the bitwise XOR operation on the argument(s).
Result type: INTEGER or BIGINT

Syntax:

BI N_XOR (number [, nunmber ...])

I mportant

If the external function Bl N_XOR is declared in your database, it will override the internal function. To make
theinternal function available, DROP or ALTER the externa function (UDF).

BIT_LENGTH()

Tip

Find amore recent version at Firebird 5.0 Language Reference: BIT LENGTH()

Availablein: DSQL, PSQL
Addedin: 2.0
Changedin: 2.1

Description: Gives the length in bits of the input string. For multi-byte character sets, this may be less
than the number of characters times 8 times the “formal” number of bytes per character as found in RDB
$CHARACTER_SETS.

Note

With arguments of type CHAR, this function takes the entire formal string length (e.g. the declared length of a
field or variable) into account. If you want to obtain the “logica” bit length, not counting the trailing spaces,
right-TRIM the argument before passing it to BIT_LENGTH.

Result type: INTEGER

130

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-bitwise.html#fblangref50-scalarfuncs-bin-xor
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-bit-length

Internal functions

Syntax:
BI T_LENGTH (str)

BLOB support: Since Firebird 2.1, this function fully supports text BLOBs of any length and character set.

Examples:

select bit_length('Hello!') from rdb$dat abase
-- returns 48

select bit_length(_iso8859 1 'Gul di!') fromrdb$dat abase
-- returns 64: U and B take up one byte each in | SC8859 1

sel ect bit_length

(cast (_is08859 1 "G uB di!' as varchar(24) character set utf8))
from rdb$dat abase

-- returns 80: U and B take up two bytes each in UTF8
select bit_length
(cast (_iso08859 1 'GuB di!' as char(24) character set utf8))
from rdb$dat abase
-- returns 208: all 24 CHAR positions count, and two of themare 16-bit

See also: OCTET_LENGTH(), CHARACTER_LENGTH

CAST()

Tip

Find amore recent version at Firebird 5.0 Language Reference: CAST()

Availablein: DSQL, ESQL, PSQL
Added in: IB
Changedin: 2.0, 2.1

Description: CAST converts an expression to the desired datatype or domain. If the conversion is not possible,
an error israised.

Result type: User-chosen.
Syntax:

CAST (expression AS {datatype | [TYPE OF] domain})
Shorthand syntax:

Alternative syntax, supported only when casting a string literal to aDATE, TIME or TIMESTAMP:

datatype 'date/tinestring'

131

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-casting.html#fblangref50-scalarfuncs-cast

Internal functions

This syntax was already availablein InterBase, but was never properly documented.
Examples:

A full-syntax cast:

sel ect cast ('12' || '-June-' || '1959' as date) from rdb$database

A shorthand string-to-date cast:

updat e People set AgeCat = 'dd'
where BirthDate < date '1-Jan-1943

Notice that you can drop even the shorthand cast from the example above, as the engine will
understand from the context (comparison to a DATE field) how to interpret the string:

updat e People set AgeCat = 'Ad’
where BirthDate < '1-Jan-1943'

But thisis not always possible. The cast below cannot be dropped, otherwise the engine would find
itself with an integer to be subtracted from a string:

sel ect date 'today' - 7 fromrdb$dat abase

The following table shows the type conversions possible with CAST.

Table 12.1. Possible CASTs

From To

Numeric types Numeric types
[VAR]CHAR
BLOB

[VAR]CHAR [VAR]CHAR
BLOB BLOB
Numeric types
DATE

TIME
TIMESTAMP

DATE [VAR]CHAR
TIME BLOB
TIMESTAMP

TIMESTAMP [VAR]CHAR
BLOB
DATE
TIME

Keep in mind that sometimesinformationislost, for instance when you cast aTIMESTAMPto aDATE. Also, the
fact that types are CAST-compatible isin itself no guarantee that a conversion will succeed. “ CAST(123456789
as SMALLINT)” will definitely result in an error, as will “CAST('Judgement Day' as DATE)".

Casting input fields: Since Firebird 2.0, you can cast statement parameters to a datatype:

132

Internal functions

cast (? as integer)

This gives you control over the type of input field set up by the engine. Please notice that with statement
parameters, you always need a full-syntax cast — shorthand casts are not supported.

Castingto adomain or itstype: Firebird 2.1 and above support casting to adomain or its base type. When casting
toadomain, any constraints (NOT NULL and/or CHECK) declared for the domain must be satisfied or the cast will
fail. Please be aware that a CHECK passes if it evaluatesto TRUE or NULL! So, given the following statements:

create domain quint as int check (value >= 5000)

sel ect cast (2000 as quint) fromrdb$dat abase -- (1)
sel ect cast (8000 as quint) fromrdb$dat abase -- (2)
sel ect cast (null as quint) fromrdb$dat abase -- (3)

only cast number (1) will result in an error.

When the TYPE OF modifier is used, the expression is cast to the base type of the domain, ignoring any
constraints. With domain quint defined as above, the following two casts are equivalent and will both succeed:

sel ect cast (2000 as type of quint) fromrdb$database
sel ect cast (2000 as int) from rdb$dat abase

If TYPE OF isused with a (VAR)CHAR type, its character set and collation are retained:

create domain i so20 varchar(20) character set is08859 1;

create domai n dunl 20 varchar(20) character set is08859 1 collate du_nl;

create table zinnen (zin varchar(20));
conmit;

insert into zinnen values ('Deze');
insert into zinnen values ('Die');
insert into zinnen values ('die');
insert into zinnen values ('deze');

sel ect cast(zin as type of is020) from zinnen order by 1;
-- returns Deze -> Die -> deze -> die

sel ect cast(zin as type of dunl20) from zinnen order by 1;
-- returns deze -> Deze -> die -> D e

Warning

If a domain's definition is changed, existing CASTs to that domain or its type may become invalid. If these
CASTs occur in PSQL modules, their invalidation may be detected. See the note The RDB$VALID_BLR field,

near the end of this document.

Casting BLOBs:. Successful casting to and from BLOBSs is possible since Firebird 2.1.

CEIL(), CEILING()

Tip

Find a more recent version at Firebird 5.0 Language Reference: CEIL(), CEILING()

133

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-math.html#fblangref50-scalarfuncs-ceil

Internal functions

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns the smallest whole number greater than or equal to the argument.
Result type: BIGINT or DOUBLE PRECISION

Syntax:

CEI L[ING (nunber)

I mportant

If the external function CEI LI NGis declared in your database, it will override the internal function CEILING
(but not CEIL). To make the internal function available, DROP or ALTER the external function (UDF).

See also: FLOOR()

CHAR_LENGTH(), CHARACTER_LENGTH()

Tip

Find a more recent verson a Firebird 5.0 Language Reference: CHAR LENGTH(),
CHARACTER _LENGTH()

Availablein: DSQL, PSQL
Added in: 2.0
Changedin: 2.1

Description: Givesthe length in characters of the input string.

Note

With arguments of type CHAR, thisfunction returnstheformal string length (i.e. the declared length of afield or
variable). If you want to obtain the “logical” length, not counting the trailing spaces, right-TRIM the argument
before passing it to CHAR[ACTER]_LENGTH.

Result type: INTEGER
Syntax:

CHAR_LENGTH (str)
CHARACTER LENGTH (str)

BLOB support: Since Firebird 2.1, this function fully supports text BLOBs of any length and character set.
Examples:

sel ect char _length('Hello!') from rdb$dat abase

134

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-char-length
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-char-length

Internal functions

-- returns 6

sel ect char_length(_iso8859 1 'GuR di!') fromrdb$dat abase
-- returns 8

sel ect char_l ength

(cast (_iso08859 1 'GuB di!' as varchar(24) character set utf8))
from r db$dat abase

-- returns 8; the fact that 0 and B take up two bytes each is irrel evant
sel ect char_l ength

(cast (_iso08859 1 'Gul di!' as char(24) character set utf8))
from rdb$dat abase

-- returns 24: all 24 CHAR positions count

See also: BIT_LENGTH(), OCTET_LENGTH

COALESCE()

Tip

Find amore recent version at Firebird 5.0 Language Reference: COALESCE()

Availablein: DSQL, PSQL
Addedin: 1.5

Description: The COALESCE function takes two or more arguments and returns the value of the first non-NULL
argument. If all the arguments evaluate to NULL, the result is NULL.

Result type: Depends on input.

Syntax:
COALESCE (<expl>, <exp2> [, <expN> ...])
Example:
sel ect
coal esce (N cknanme, FirstName, "M./Ms.") || " ' || LastName

as Ful | Nane
from Per sons

This example picks the Nickname from the Persons table. If it happens to be NULL, it goes on to FirstName. If
that tooisNULL, “Mr./Mrs.” isused. Finaly, it adds the family name. All in all, it tries to use the avail able data
to compose afull name that is asinformal as possible. Notice that this scheme only works if absent nicknames
and first names are really NULL: if one of them is an empty string instead, COALESCE will happily return that
to the caller.

Note

In Firebird 1.0.x, where COALESCE is not available, you can accomplish the same with the * nvl external
functions.

135

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-conditional.html#fblangref50-scalarfuncs-coalesce

Internal functions

COS()

Tip

Find amore recent version at Firebird 5.0 L anguage Reference: COS()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns an angle's cosine. The argument must be given in radians.

Result type: DOUBLE PRECISION
Syntax:

COS (angl e)

* Any non-NULL result is—obviously —in therange [-1, 1].

I mportant

If the external function COS is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

COSH()

Tip

Find amore recent version at Firebird 5.0 Language Reference: COSH()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the hyperbolic cosine of the argument.

Result type: DOUBLE PRECISION
Syntax:

CCSH (number)

* Any non-NULL result isin therange[1, INF].

Important

If the external function COSH is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

136

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-math.html#fblangref50-scalarfuncs-cos
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-math.html#fblangref50-scalarfuncs-cosh

Internal functions

COT()

Tip

Find amore recent version at Firebird 5.0 Language Reference: COT()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns an angle's cotangent. The argument must be given in radians.
Result type: DOUBLE PRECISION

Syntax:

COr (angl e)

I mportant

If the external function COT is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

DATEADD()

Tip

Find amore recent version at Firebird 5.0 L anguage Reference: DATEADD()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Adds the specified number of years, months, days, hours, minutes, seconds or milliseconds to a
date/time value.

Result type: DATE, TIME or TIMESTAMP
Syntax:
DATEADD (<ar gs>)

<ar gs> i = <anobunt> <unit> TO <datetinme>
| <unit>, <ampunt>, <datetine>

<anount > = an integer expression (negative to subtract)
<uni t > = YEAR | MONTH | DAY

| HOUR | M NUTE | SECOND | M LLI SECOND
<datetinme> ::= a DATE, TIME or TI MESTAMP expression

137

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-math.html#fblangref50-scalarfuncs-cot
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-datetime.html#fblangref50-scalarfuncs-dateadd

Internal functions

* Theresult typeis determined by the third argument.

» With DATE arguments, only YEAR, MONTH and DAY can be used.

» With TIME arguments, only HOUR, MINUTE, SECOND and MILLISECOND can be used.
Examples:

dat eadd (28 day to current _date)

dateadd (-6 hour to current_tine)

dateadd (nonth, 9, DateO Conception)

dateadd (minute, 90, time 'now)
dateadd (? year to date '11-Sep-1973")

DATEDIFF()

Tip

Find a more recent version at Firebird 5.0 Language Reference: DATEDIFF()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the number of years, months, days, hours, minutes, seconds or milliseconds elapsed
between two date/time values.

Result type: BIGINT
Syntax:
DATEDI FF (<args>)

<ar gs> .= <unit> FROM <nonent 1> TO <nonent 2>
| <unit>, <nonentl> <nmonent2>

<uni t> = YEAR | MONTH | DAY
| HOUR| MNUTE | SECOND | M LLI SECOND
<nonent N> = a DATE, TIME or TIMESTAWMP expression

* DATE and TIMESTAMP arguments can be combined. No other mixes are allowed.

» With DATE arguments, only YEAR, MONTH and DAY can be used.

» With TIME arguments, only HOUR, MINUTE, SECOND and MILLISECOND can be used.
Computation:
» DATEDIFF doesn't ook at any smaller units than the one specified in the first argument. As aresult,

“datedi ff (year, date '1-Jan-2009', date '31-Dec-2009')" returnsO, but
“datedi ff (year, date '31-Dec-2009', date '1-Jan-2010")" returnsl

* It does, however, look at al the bigger units. So:

138

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-datetime.html#fblangref50-scalarfuncs-datediff

Internal functions

“datedi ff (day, date '26-Jun-1908', date '11-Sep-1973")" returns23818
* A negative result value indicates that nonent 2 lies before monent 1.
Examples:
datedi ff (hour fromcurrent_tinestanp to tinestanp '12-Jun-2059 06:00")
datedi ff (mnute fromtime '0:00" to current_tine)

datedi ff (nonth, current_date, date '1-1-1900')
datedi ff (day fromcurrent _date to cast(? as date))

DECODE()

Tip

Find a more recent version at Firebird 5.0 L anguage Reference: DECODE()

Availablein: DSQL, PSQL
Added in: 2.1

Description: DECODE is a shortcut for the so-called “simple CASE” construct, in which a given expression is
compared to a number of other expressions until a match is found. The result is determined by the value listed

after the matching expression. If no match is found, the default result is returned, if present. Otherwise, NULL
is returned.

Result type: Varies
Syntax:

DECODE (<t est-expr >,
<expr>, result
[, <expr>, result ...]
[, defaultresult])

The equivalent CASE construct:

CASE <t est - expr >
WHEN <expr> THEN result
[WHEN <expr> THEN result ...]
[ELSE defaul tresult]

END

Caution

Matching is done with the “=" operator, so if <t est - expr > isNULL, it won't match any of the
<expr >s, not even those that are NULL.

Example:

sel ect nane,
age,
decode(upper (sex),

139

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-conditional.html#fblangref50-scalarfuncs-decode

Internal functions

"M, 'Mle',
"F', 'Femul e',
"Unknown'),

religion
from peopl e

See also: CASE, Simple CASE

EXP()

Tip

Find amore recent version at Firebird 5.0 Language Reference: EXP()

Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns the natural exponential, e"!™e"
Result type: DOUBLE PRECISION
Syntax:
EXP (nunber)

See also: LN()

EXTRACT()

Tip

Find a more recent version at Firebird 5.0 L anguage Reference: EXTRACT()

Availablein: DSQL, ESQL, PSQL
Added in: IB 6
Changedin: 2.1

Description: Extractsand returns an element from aDATE, TIME or TIMESTAMP expression. Thisfunction was
aready added in InterBase 6, but not documented in the Language Reference at the time.

Result type: SMALLINT or NUMERIC

Syntax:
EXTRACT (<part> FROM <dateti me>)
<part > ;1= YEAR | MONTH | WEEK

| DAY | WEEKDAY | YEARDAY
| HOUR | M NUTE | SECOND | M LLI SECOND

140

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-math.html#fblangref50-scalarfuncs-exp
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-datetime.html#fblangref50-scalarfuncs-extract

Internal functions

<datetinme> ::= a DATE, TIME or TI MESTAMP expression

The returned datatypes and possible ranges are shown in the table below. If you try to extract a part that isn't
present in the date/time argument (e.g. SECOND from aDATE or YEAR from a TIME), an error occurs.

Table 12.2. Types and ranges of EXTRACT results

Part Type Range Comment

YEAR SMALLINT 1-9999

MONTH SMALLINT 1-12

WEEK SMALLINT 1-53

DAY SMALLINT 1-31

WEEKDAY SMALLINT 0-6 0 = Sunday
YEARDAY SMALLINT 0-365 0 =January 1
HOUR SMALLINT 0-23

MINUTE SMALLINT 0-59

SECOND NUMERIC(9,4) 0.0000-59.9999 includes millisecond as

fraction

MILLISECOND NUMERIC(9,1) 0.0-999.9 brokenin2.1,2.1.1
MILLISECOND

Added in: 2.1 (with bug)
Fixedin: 2.1.2

Description: Firebird 2.1 and up support extraction of the millisecond fromaTIME or TIMESTAMP. Thedatatype
returned is NUMERIC(9,1).

Bug alert

MILLISECOND extraction is broken in Firebird 2.1 and 2.1.1. In those versions, the number returned is an
INTEGER including SECOND* 1000, so if thetimeise.g. 20:48:17.637, the MILLISECOND vaueis 17637 while
it should be 637. This bug has been fixed in version 2.1.2.

Note

If you extract the millisecond from CURRENT_TIME, be aware that this variable defaults to seconds precision,
so the result will always be 0. Extract from CURRENT_TIME(3) or CURRENT_TIMESTAMP to get milliseconds
precision.

WEEK

Addedin: 2.1

141

Internal functions

Description: Firebird 2.1 and up support extraction of the | SO-8601 week number from aDATE or TIMESTAMP.
ISO-8601 weeks start on a Monday and always have the full seven days. Week 1 is the first week that has a
majority (at least 4) of its daysin the new year. The first 1-3 days of the year may belong to the last week (52
or 53) of the previous year. Likewise, ayear's final 1-3 days may belong to week 1 of the following year.

Caution

Be careful when combining WEEK and Y EAR results. For instance, 30 December 2008 liesin week 1 of 2009,
so“extract (week fromdate ' 30 Dec 2008') " returns 1. However, extracting Y EAR always gives
the calendar year, which is 2008. In this case, WEEK and Y EAR are at odds with each other. The same happens
when the first days of January belong to the last week of the previous year.

Please also notice that WEEKDAY is not 1SO-8601 compliant: it returns O for Sunday, whereas 1SO-8601
specifies 7.

FLOOR()

Tip

Find amore recent version at Firebird 5.0 Language Reference: FLOOR()

Availablein: DSQL, PSQL

Addedin: 2.1

Description: Returns the largest whole number smaller than or equal to the argument.
Result type: BIGINT or DOUBLE PRECISION

Syntax:

FLOOR (nunber)

Important

If the external function FLOOR is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

See also: CEIL() / CEILING()

GEN_ID()

Tip

Find amore recent version at Firebird 5.0 L anguage Reference: GEN_1D()

Availablein: DSQL, ESQL, PSQL
Addedin: IB

142

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-math.html#fblangref50-scalarfuncs-floor
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-generators.html#fblangref50-scalarfuncs-gen-id

Internal functions

Description: Increments agenerator or sequence and returnsits new value. From Firebird 2.0 onward, the SQL -
compliant NEXT VALUE FOR syntax is preferred, except when an increment other than 1 is needed.

Result type: BIGINT

Syntax:
CEN_I D (generator-nane, <step>)
<step> ::= An integer expression.
Example:

new.rec_id = gen_id(gen_recnum 1);

Warning

Unlessyou know very well what you are doing, using GEN_ID() with step valueslower than 1 may compromise
your data'sintegrity.

See also: NEXT VALUE FOR, CREATE GENERATOR

GEN_UUID()

Tip

Find a more recent version at Firebird 5.0 L anguage Reference: GEN_UUID()

Availablein: DSQL, PSQL

Addedin: 2.1

Description: Returns auniversally unique ID as a 16-byte character string.
Result type: CHAR(16) CHARACTER SET OCTETS

Syntax:

GEN_UUI D ()

HASH()

Tip

Find amore recent version at Firebird 5.0 Language Reference: HASH()

Availablein: DSQL, PSQL

Addedin: 2.1

143

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-uuid.html#fblangref50-scalarfuncs-gen-uuid
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-hash

Internal functions

Description: Returns a hash value for the input string. This function fully supports text BLOBSs of any length
and character set.

Result type: BIGINT
Syntax:

HASH ('string)

IIF()

Tip

Find a more recent version at Firebird 5.0 Language Reference: 11F()

Availablein: DSQL, PSQL
Addedin: 2.0

Description: 11Ftakesthree arguments. If thefirst evaluatestot r ue, the second argument isreturned; otherwise
thethird is returned.

Result type: Depends on input.

Syntax:

I1'F (<condition> ResultT, ResultF)

<condition> ::= A bool ean expression.
Example:
select iif(sex ="M, "Sir', '"Madam) from Custoners

IIF(Cond, Resul t 1, Resul t 2) isashortcut for “CASE WHEN Cond THEN Resul t 1 ELSE Resul t 2 END".
Y ou can also compare |IF to theternary “? : ” operator in C-like languages.

LEFT()

Tip

Find amore recent version at Firebird 5.0 Language Reference: LEFT()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the leftmost part of the argument string. The number of charactersis given in the second
argument.

Result type: VARCHAR or BLOB

144

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-conditional.html#fblangref50-scalarfuncs-iif
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-left

Internal functions

Syntax:
LEFT (string, |ength)

» Thisfunction fully supportstext BLOBs of any length, including those with a multi-byte character
Set.

» |If stringisaBLOB, theresult isaBLOB. Otherwise, the result is a VARCHAR(n) with n the
length of the input string.

» |f thel engt h argument exceeds the string length, the input string is returned unchanged.

» If thel engt h argument is not awhole number, bankers' rounding (round-to-even) is applied, i.e.
0.5 becomes 0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, €tc.

See also: RIGHT()

LN()

Tip

Find amore recent version at Firebird 5.0 Language Reference: LN()

Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returns the natural logarithm of the argument.

Result type: DOUBLE PRECISION

Syntax:

LN (nunber)

* Anerrorisraised if the argument is negative or O.

| mportant

If the external function LN is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

See also: EXP()

LOG()

Tip

Find amore recent version at Firebird 5.0 L anguage Reference: LOG()

145

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-math.html#fblangref50-scalarfuncs-ln
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-math.html#fblangref50-scalarfuncs-log

Internal functions

Availablein: DSQL, PSQL

Addedin: 2.1

Description: Returns the x-based logarithm of y.

Result type: DOUBLE PRECISION

Syntax:
LOG (x, y)
» If x isnegative or y is negative, the result is always NaN.
» If x ispositiveandy is0, +/-1 NF is returned, depending on x.
e Bug: If x =1andy >=0 (but not 1), +/-1 NF isreturned.
 Bug: Ifx=0andy >0, theresultisO.

Much of this behaviour is going to change in Firebird 2.5.

I mportant

If the external function LOG is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

LOG10()

Tip

Find a more recent version at Firebird 5.0 L anguage Reference: L OG10()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns the 10-based logarithm of the argument.
Result type: DOUBLE PRECISION

Syntax:

LOGLO (nunber)

» If the argument is O, -1 NF is returned. If the argument is negative, NaN is returned. This is
inconsistent with LN(), which raises an error in these cases. In Firebird 2.5 and up, an error will
be raised if the argument is negative or 0.

Important

If the external function LOGLO0 is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

146

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-math.html#fblangref50-scalarfuncs-log10

Internal functions

LOWER()

Tip

Find amore recent version at Firebird 5.0 Language Reference: LOWER()

Availablein: DSQL, ESQL, PSQL
Added in: 2.0
Changedin: 2.1

Description: Returns the lower-case equivalent of the input string. The exact result depends on the character
set. With ASCII or NONE for instance, only ASCII characters are lowercased; with OCTETS, the entire string is
returned unchanged. Since Firebird 2.1 this function also fully supports text BLOBs of any length and character
Set.

Result type: (VAR)CHAR or BLOB

Syntax:

LONER (str)

Note

Because LOWER is a reserved word, the internal function wil take precedence even if the external function
by that name has also been declared. To call the (inferior!) external function, use double-quotes and the exact
capitalisation, asin" LONER" (st r).

Example:

sel ect Sheriff from Towns
where | ower (Nanme) = 'cooper''s vall ey’

See also; UPPER

LPAD()

Tip

Find amore recent version at Firebird 5.0 Language Reference: LPAD()

Availablein: DSQL, PSQL
Addedin: 2.1

Changedin: 2.1.4

147

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-lower
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-lpad

Internal functions

Description: Left-pads a string with spaces or with a user-supplied string until a given length is reached.
Result type: VARCHAR or BLOB
Syntax:

LPAD (str, endlen [, padstr])

» Thisfunction fully supports text BLOBs of any length and character set.

» If str isaBLOB, theresult isaBLOB. Otherwise, the result isa VARCHAR(32765) in versions
2.1-2.1.3, and aVARCHAR(endlI en) in versions 2.1.4 and up.

» If padstr isgivenand equals' ' (empty string), no padding takes place.

* Ifendl enislessthanthecurrent string length, the string istruncated to endl en, evenif padst r
is the empty string.

Important

If the external function LPAD is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

Tip

In versions 2.1-2.1.3, it is generally wise to cast VARCHAR(32765) results to a smaller size, especially in
gueries that return more than one column. Otherwise, a“block size exceeds implementation restriction” error
may occur. In Firebird 2.1.4 and up, where the formal size matches the actual length, thisis no longer an issue.

Examples:

I pad (' Hello', 12) -- returns ' Hel | o'
pad ('Hello', 12, '-") -- returns '------- Hel | o'
lpad ('Hello', 12, '") -- returns 'Hello'

pad (' Hello', 12, 'abc') -- returns 'abcabcaHel |l o'
Il pad (' Hello', 12, 'abcdefghij') -- returns 'abcdefgHel |l o'
Ipad ('Hello', 2) -- returns 'He'

lpad ('Hello', 2, "-") -- returns ' He'

Ipad (‘Hello', 2, '") -- returns 'He'

Warning

When used on a BLOB, this function may need to load the entire object into memory. Although it doestry to
limit memory consumption, this may affect performance if huge BLOBS are involved.

See also: RPAD()

MAXVALUE()

Tip

Find amore recent version at Firebird 5.0 Language Reference: MAXVALUE()

148

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-conditional.html#fblangref50-scalarfuncs-maxvalue

Internal functions

Availablein: DSQL, PSQL
Added in: 2.1

Description: Returnsthe maximum valuefrom alist of numerical, string, or date/time expressions. Thisfunction
fully supports text BLOBs of any length and character set.

Result type: Varies

Syntax:

MAXVALUE (expr [, expr ...])

 If one or more expressions resolve to NULL, MAXVALUE returns NULL. This behaviour differs
from the aggregate function MAX.

See also: MINVALUE()

MINVALUE()

Tip

Find a more recent version at Firebird 5.0 L anguage Reference: MINVALUE()

Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returnsthe minimum value from alist of numerical, string, or date/time expressions. Thisfunction
fully supports text BLOBS of any length and character set.

Result type: Varies

Syntax:

M NVALUE (expr [, expr ...])

» |f one or more expressions resolve to NULL, MINVALUE returns NULL. This behaviour differs
from the aggregate function MIN.

See also: MAXVALUE()

MOD()

Tip

Find a more recent version at Firebird 5.0 Language Reference: MOD()

Availablein: DSQL, PSQL

149

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-conditional.html#fblangref50-scalarfuncs-minvalue
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-math.html#fblangref50-scalarfuncs-mod

Internal functions

Added in: 2.1
Description: Returns the remainder of an integer division.
Result type: INTEGER or BIGINT
Syntax:
MDD (a, b)

* Non-integer arguments are rounded before the division takes place. So, “7.5 mod 2.5” gives 2 (8
mod 3), not 0.

I mportant

If the external function MOD is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

NULLIF()

Tip

Find amore recent version at Firebird 5.0 Language Reference: NULLIF()

Availablein: DSQL, PSQL
Addedin: 1.5

Description: NULLIF returns the value of the first argument, unlessit is equal to the second. In that case, NULL
isreturned.

Result type: Depends on input.

Syntax:
NULLI F (<expl>, <exp2>)
Example:
sel ect avg(nullif(Wwight, -1)) from Fat Peopl e

This will return the average weight of the persons listed in FatPeople, excluding those having a weight of -1,
since AVG skips NULL data. Presumably, -1 indicates “weight unknown™ in this table. A plain AVG(Weight)
would include the -1 weights, thus skewing the result.

Note

In Firebird 1.0.x, where NULLIF is not available, you can accomplish the same with the *nul |i f external
functions.

150

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-conditional.html#fblangref50-scalarfuncs-nullif

Internal functions

OCTET_LENGTH()

Tip

Find a more recent version at Firebird 5.0 Language Reference: OCTET _LENGTH()

Availablein: DSQL, PSQL
Addedin: 2.0

Changedin: 2.1

Description: Gives the length in bytes (octets) of the input string. For multi-byte character sets, this may
be less than the number of characters times the “formal” number of bytes per character as found in RDB
$CHARACTER_SETS.

Note

With arguments of type CHAR, this function takes the entire formal string length (e.g. the declared length of a
field or variable) into account. If you want to obtain the “logical” byte length, not counting the trailing spaces,
right-TRIM the argument before passing it to OCTET_LENGTH.

Result type: INTEGER

Syntax:

OCTET_LENGTH (str)

BLOB support: Since Firebird 2.1, this function fully supports text BLOBs of any length and character set.

Examples:

select octet_length('Hello!') fromrdb$dat abase
-- returns 6

sel ect octet _length(_iso8859 1 "G Ul di!') fromrdb$dat abase
-- returns 8: U and B take up one byte each in | S08859 1

sel ect octet_length

(cast (_is08859 1 "G uB di!' as varchar(24) character set utf8))
from r db$dat abase

-- returns 10: U and B take up two bytes each in UTF8

sel ect octet_length

(cast (_is08859 1 "G uB di!" as char(24) character set utf8))
from rdb$dat abase

-- returns 26: all 24 CHAR positions count, and two of them are 2-byte

See also: BIT_LENGTH(), CHARACTER_LENGTH

151

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-octet-length

Internal functions

OVERLAY()

Tip

Find amore recent version at Firebird 5.0 L anguage Reference: OVERLAY ()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Replaces part of astring with another string. By default, the number of charactersremoved from the
host string equals the length of the replacement string. With the optional fourth argument, the user can specify
adifferent number of charactersto be removed.

Result type: VARCHAR or BLOB
Syntax:
OVERLAY (string PLACI NG repl acement FROM pos [FOR | engt h])

» Thisfunction supports BLOBs of any length. Dueto abug in versions2.1-2.1.4, BLOBS containing
multi-byte characters — and sometimes even single-byte non-ASCII characters — will cause a
“Cannot trandliterate character between character sets” error. Thishasbeenfixed for Firebird 2.1.5.

e If string or replacenent is a BLOB, the result is a BLOB. Otherwise, the result is a
VARCHAR(Nn) with n the sum of thelengthsof st ri ng andr epl acenent .

» Asusua in SQL string functions, pos is 1-based.
» If posisbeyondtheend of st ri ng, repl acenent isplaced directly after st ri ng.

* If the number of characters from pos to the end of string is smaler than the length of
repl acenent (or than the | engt h argument, if present), stri ng is truncated at pos and
repl acenent placed after it.

» Theeffect of a“FOR 0" clauseisthat r epl acenment issmply inserted into st ri ng.
e If any argument isNULL, theresult isNULL.

» If pos orl engt h is not awhole humber, bankers rounding (round-to-even) is applied, i.e. 0.5
becomes 0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, etc.

Examples:
overlay (' Goodbye' placing 'Hello' from 2) -- returns ' GHel | oe'
overlay (' Goodbye' placing 'Hello' fromb5) -- returns ' GoodHel | o'
overlay (' Goodbye' placing 'Hello' from 8) -- returns ' GoodbyeHel | o'
overlay (' Goodbye' placing 'Hello' from 20) -- returns ' GoodbyeHel | o'
overlay (' Goodbye' placing 'Hello' from2 for 0) -- r. 'GHell ooodbye'
overlay (' Goodbye' placing 'Hello' from2 for 3) -- r. 'CHel |l obye'
overlay (' Goodbye' placing 'Hello' from2 for 6) --r. "CHello'

152

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-overlay

Internal functions

overl ay

overl ay
overl ay
overl ay

overl ay
overl ay
overl ay

' Goodbye'

' Goodbye'
' Goodbye'
' Goodbye'

pl aci ng

placing "'
placing "'
placing "'

pl acing 'Hello'
pl aci ng ' Hel | o'
pl acing 'Hello'

"Hell o' from2 for 9)

from4) --
from4 for 3) --
from4 for 20) --

from4) --
from4 for 0) --
from4 for 20) --

oo [fq

returns
returns
returns

returns
returns
returns

"GHel |l o

' Goodbye'
' Gooe'
' Goo'

"Hel | o'
"Hel | o'
"Hel | o'

Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect

performance if huge BLOBs are involved.

See also: REPLACE()

PI1()

Tip

Find amore recent version at Firebird 5.0 Language Reference: Pl()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns an approximation of the value of #.

Result type: DOUBLE PRECISION

Syntax:
Pl ()

Important

If the external function PI is declared in your database, it will override the internal function. To make the

internal function available, DROP or ALTER the external function (UDF).

POSITION()

Tip

Find amore recent version at Firebird 5.0 Language Reference: POSITION()

Availablein: DSQL, PSQL

Added in: 2.1

153

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-math.html#fblangref50-scalarfuncs-pi
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-position

Internal functions

Description: Returns the (1-based) position of the first occurrence of a substring in a host string. With the
optional third argument, the search starts at a given offset, disregarding any matches that may occur earlier in
the string. If no match isfound, the result is 0.

Result type: INTEGER
Syntax:
PCsSI TI ON (<ar gs>)

<args> ::= substr IN string
| substr, string [, startpos]

» The optional third argument is only supported in the second syntax (comma syntax).

» Theempty string isconsidered asubstring of every string. Therefore, if subst r is" (empty string)
andstringisnot NULL, theresultis:

- lif startpos isnot given;
- startposifstartpos lieswithinstri ng;
- Oif startpos liesbeyondtheend of stri ng.

Notice: A bug in Firebird 2.1-2.1.3 causes POSITION to always return 1 if subst r isthe empty
string. Thisisfixed in 2.1.4.

» Thisfunction fully supports text BLOBS of any size and character set.

Examples:
position ('be' in 'To be or not to be') -- returns 4
position ('be', 'To be or not to be') -- returns 4
position ('be', 'To be or not to be', 4) -- returns 4
position ('be', 'To be or not to be', 8) -- returns 17
position ('be', 'To be or not to be', 18) -- returns O
position ('be" in 'Al as, poor Yorick!") -- returns O
Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect
performance if huge BLOBS are involved.

POWER()

Tip

Find a more recent version at Firebird 5.0 Language Reference: POWER()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Returnsx to they'th power.

154

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-math.html#fblangref50-scalarfuncs-power

Internal functions

Result type: DOUBLE PRECISION

Syntax:

PONER (X, V)

If x negative, an error israised.

I mportant

If the external function POVNER is declared in your database as power instead of the default dPower , it will
override the internal function. To make the internal function available, DROP or ALTER the external function

(UDF).

RAND()

Tip

Find a more recent version at Firebird 5.0 Language Reference: RAND()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns arandom number between 0 and 1.

Result type: DOUBLE PRECISION

Syntax:

RAND ()

I mportant

If the external function RAND is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

RDB$GET _CONTEXT()

Tip

Find amore recent version at Firebird 5.0 L anguage Reference: RDB$GET CONTEXT()

Note

RDB$GET_CONTEXT and its counterpart RDB$SET_CONTEXT are actually predeclared UDFs. They arelisted
here asinternal functions because they are always present — the user doesn't have to do anything to make them
available.

155

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-math.html#fblangref50-scalarfuncs-rand
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions.html#fblangref50-scalarfuncs-get-context

Internal functions

Availablein: DSQL, ESQL, PSQL
Added in: 2.0
Changedin: 2.1

Description: Retrieves the value of a context variable from one of the namespaces SYSTEM, USER_SESSION
and USER_TRANSACTION.

Result type: VARCHAR(255)
Syntax:
RDB$GET _CONTEXT (' <namespace>', ' <varnane>')

<nanespace>
<var nane>

SYSTEM | USER _SESSI ON | USER_TRANSACTI ON
A case-sensitive string of max. 80 characters

The namespaces. The USER_SESSION and USER_TRANSACTION namespaces areinitially empty. The user can
create and set variablesin them with RDB$SET_CONTEXT() and retrieve them with RDBSGET_CONTEXT(). The
SY STEM namespace is read-only. It contains a number of predefined variables, shown in the table below.

Table 12.3. Context variablesin the SY STEM namespace

DB_NAME Either the full path to the database or — if connecting via the path is disallowed
—itsalias.

NETWORK _PROTOCOL | The protocol used for the connection: * TCPv4' ," WNET' ," XNET' or NULL.

CLI ENT_ADDRESS For TCPv4, thisis the IP address. For XNET, the local process ID. For all other
protocolsthis variableis NULL.

CURRENT _USER Same as global CURRENT _USER variable.

CURRENT_ROLE Same as global CURRENT _ROLE variable.

SESSI ON_| D Same as global CURRENT _CONNECTI ON variable.

TRANSACTI ONLI D Same as global CURRENT_TRANSACTI ON variable.

| SOLATI ON_LEVEL The isolation level of the current transaction: ' READ COWM TTED ,
" SNAPSHOT' or' CONSI STENCY' .

ENG NE_VERSI ON The Firebird engine (server) version. Added in 2.1.

Returnvaluesand error behaviour: If the polled variable existsin the given namespace, itsvaluewill bereturned
as astring of max. 255 characters. If the namespace doesn't exist or if you try to access a non-existing variable
in the SY STEM namespace, an error israised. If you poll anon-existing variable in one of the other namespaces,
NULL isreturned. Both namespace and variable names must be given as single-quoted, case-sensitive, non-NULL
strings.

Examples:
sel ect rdb$get context (' SYSTEM, 'DB _NAME) from rdb$dat abase

New. User Addr = rdb$get _context (' SYSTEM, ' CLI ENT_ADDRESS');

156

Internal functions

insert into MyTabl e (TestField)
val ues (rdb$get context (' USER SESSION , 'MyVar'))

See also: RDB$SET_CONTEXT()

RDB$SET _CONTEXT()

Tip

Find amore recent version at Firebird 5.0 L anguage Reference: RDB$SET_CONTEXT()

Note

RDB$SET_CONTEXT and its counterpart RDB$SGET_CONTEXT are actually predeclared UDFs. They arelisted
here asinternal functions because they are always present — the user doesn't have to do anything to make them
available.

Availablein: DSQL, ESQL, PSQL
Addedin: 2.0

Description: Creates, sets or unsets a variable in one of the user-writable namespaces USER_SESSION and
USER_TRANSACTION.

Result type: INTEGER
Syntax:

RDB$SET_CONTEXT (' <namespace>', '<varname>, <value> | NULL)

<namespace> = USER_SESSI ON | USER_TRANSACTI ON
<var nane> = A case-sensitive string of max. 80 characters
<val ue> = A value of any type, as long as it's castable

to a VARCHAR(255)

The namespaces. The USER_SESSION and USER_TRANSACTION namespaces areinitially empty. The user can
create and set variablesin them with RDB$SET_CONTEXT() and retrieve them with RDBSGET_CONTEXT(). The
USER_SESSION context is bound to the current connection. Variablesin USER_TRANSACTION only exist inthe
transaction in which they have been set. When the transaction ends, the context and all the variables defined
init are destroyed.

Return values and error behaviour: The function returns 1 if the variable already existed before the call and O

if it didn't. To remove avariable from a context, set it to NULL. If the given namespace doesn't exist, an error is
raised. Both namespace and variable names must be entered as single-quoted, case-sensitive, non-NULL strings.

Examples:
sel ect rdb$set context (' USER SESSION , 'MyVar', 493) from rdb$dat abase
rdb$set cont ext (' USER_SESSI ON , ' RecordsFound', RecCounter);

sel ect rdb$set _context (' USER_TRANSACTI ON', 'Savepoints', 'Yes')

157

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions.html#fblangref50-scalarfuncs-set-context

Internal functions

from rdb$dat abase
Notes:
» The maximum number of variablesin any single context is 1000.

* All USER_TRANSACTION variables will survive a ROLLBACK RETAIN or ROLLBACK TO SAVEPOINT
unaltered, no matter at which point during the transaction they were set.

» DuetoitsUDF-likenature, RDB$SET_CONTEXT can—in PSQL only —becalled like avoid function, without
assigning the result, asin the second example above. Regular internal functions don't allow this type of use.

See also: RDB$GET_CONTEXT()

REPLACE()

Tip

Find a more recent version at Firebird 5.0 L anguage Reference: REPL A CE()

Availablein: DSQL, PSQL
Added in: 2.1
Description: Replaces all occurrences of a substring in a string.
Result type: VARCHAR or BLOB
Syntax:
REPLACE (str, find, repl)
» Thisfunction fully supports text BLOBs of any length and character set.

» If any argument is a BLOB, the result is a BLOB. Otherwise, the result is a VARCHAR(n) with n
calculated from thelengthsof st r, f i nd and r epl in such away that even the maximum possible number
of replacements won't overflow the field.

» Iffindistheempty string, st r isreturned unchanged.
* If repl istheempty string, all occurrencesof fi nd are deleted from st r .

* If any argument isNULL, the result is always NULL, even if nothing would have been replaced.

Examples:
replace ("Billy Wlder', 'il', 'oog') -- returns ' Boogly Wogder'
replace ('Billy Wlder', "il", ") -- returns 'Bly Wer'
replace ("Billy Wlder', null, 'oog') -- returns NULL
replace ('Billy Wlder', "'il', null) -- returns NULL
replace ("Billy Wlder', "xyz', null) -- returns NULL (!)
replace ('Billy Wlder', 'xyz', 'abc') -- returns 'Billy WIder'
replace ("Billy WIder", 'Y, "abc") -- returns 'Billy WIlder'

158

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-replace

Internal functions

Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect
performance if huge BLOBS are involved.

See also: OVERLAY()

REVERSE()

Tip

Find a more recent version at Firebird 5.0 Language Reference: REVERSE()

Availablein: DSQL, PSQL

Addedin: 2.1

Description: Returns a string backwards.
Result type: VARCHAR

Syntax:

REVERSE (str)

Examples:
reverse ('spoonful') -- returns ' | ufnoops’
reverse (‘'Was it a cat | saw?') -- returns '?was | tac a ti saW
Tip

This function comesin very handy if you want to group, search or order on string endings, e.g. when dealing
with domain names or email addresses:

create index ix_people_enail on people
conputed by (reverse(enuil));

sel ect * from people
where reverse(email) starting with reverse('.br");

RIGHT()

Tip

Find a more recent version at Firebird 5.0 L anguage Reference: RIGHT ()

159

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-reverse
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-right

Internal functions

Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returns the rightmost part of the argument string. The number of charactersis given in the second
argument.

Result type: VARCHAR or BLOB
Syntax:

RI GHT (string, |ength)

» This function supports text BLOBS of any length, but has abug in versions 2.1-2.1.3 that makes
it fail with text BLOBs larger than 1024 bytes that have a multi-byte character set. This has been
fixed inversion 2.1.4.

e If stringisaBLOB, theresult isaBLOB. Otherwise, the result is a VARCHAR(n) with n the
length of the input string.

» If thel engt h argument exceeds the string length, the input string is returned unchanged.

» If thel engt h argument isnot awhole number, bankers' rounding (round-to-even) is applied, i.e.
0.5 becomes 0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, etc.

Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect
performance if huge BLOBs are involved.

Important

If the external function RI GHT is declared in your database asr i ght instead of the default sri ght , it will
override the internal function. To make the internal function available, DROP or ALTER the external function

(UDP).

See also: LEFT()

ROUND()

Tip

Find amore recent version at Firebird 5.0 Language Reference: ROUND()

Availablein: DSQL, PSQL
Addedin: 2.1

Description: Rounds a number to the nearest integer. If the fractional part is exactly 0. 5, rounding is upward
for positive numbers and downward for negative numbers. With the optional scal e argument, the number can
be rounded to powers-of-ten multiples (tens, hundreds, tenths, hundredths, etc.) instead of just integers.

160

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-math.html#fblangref50-scalarfuncs-round

Internal functions

Result type: INTEGER, (scaled) BIGINT or DOUBLE
Syntax:

ROUND (<nunber> [, <scal e>])

<nunber> ::= a nunerical expression
<scal e> = an integer specifying the nunber of decinmal places
toward whi ch shoul d be rounded, e.gqg.
2 for rounding to the nearest nmultiple of 0.01
1 for rounding to the nearest multiple of 0.1
0 for rounding to the nearest whol e nunber
-1 for rounding to the nearest multiple of 10
-2 for rounding to the nearest nmultiple of 100

Notes:
» If thescal e argument is present, the result usually has the same scale as the first argument, e.g.

- ROUND(123.654, 1) returns 123.700 (not 123.7)
- ROUND(8341.7, -3) returns 8000.0 (not 8000)
- ROUND(45.1212, 0) returns 45.0000 (not 45)

Otherwise, the result scaleisO:

- ROUND(45.1212) returns 45

Important

« If the external function ROUND is declared in your database, it will override the internal function. To make
the internal function available, DROP or ALTER the external function (UDF).

e |f you are used to the behaviour of the external function ROUND, please notice that the internal function

Tip

Find amore recent version at Firebird 5.0 Language Reference: RPAD()

Availablein: DSQL, PSQL

Added in: 2.1

Changedin: 2.1.4

Description: Right-pads a string with spaces or with a user-supplied string until a given length is reached.
Result type: VARCHAR or BLOB

Syntax:

RPAD (str, endlen [, padstr])

161

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-rpad

Internal functions

» Thisfunction fully supports text BLOBs of any length and character set.

* If str isaBLOB, theresult isaBLOB. Otherwise, the result isa VARCHAR(32765) in versions
2.1-2.1.3, and aVARCHAR(end! en) in versions 2.1.4 and up.

« |f padstr isgivenand equals' ' (empty string), no padding takes place.

» If endl enislessthanthecurrent string length, the stringistruncatedtoendl en, evenif padstr
isthe empty string.

I mportant

If the external function RPAD is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

Tip

In versions 2.1-2.1.3, it is generally wise to cast VARCHAR(32765) results to a smaller size, especidly in
queries that return more than one column. Otherwise, a “block size exceeds implementation restriction” error
may occur. In Firebird 2.1.4 and up, where the formal size matches the actual length, thisis no longer an issue.

Examples:

rpad ('Hello', 12) -- returns "Hello

rpad (‘Hello', 12, '-") -- returns 'Hello------- '
rpad ('Hello', 12, '") -- returns 'Hello'

rpad (' Hello', 12, 'abc') -- returns ' Hel | oabcabca'
rpad (' Hello', 12, 'abcdefghij') -- returns ' Hel | oabcdef g’
rpad (' Hello', 2) -- returns ' He'

rpad ('Hello', 2, '"-") -- returns ' He'

rpad (‘Hello', 2, '") -- returns 'He'

Warning

When used on a BLOB, this function may need to load the entire object into memory. Although it doestry to
limit memory consumption, this may affect performance if huge BLOBS are involved.

See also: LPAD()

SIGN()

Tip

Find amore recent version at Firebird 5.0 L anguage Reference: SIGN()

Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns the sign of the argument: -1, O or 1.

Result type: SMALLINT

162

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-math.html#fblangref50-scalarfuncs-sign

Internal functions

Syntax:

SI GN (nunber)

I mportant

If the external function SI GN is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

SIN()

Tip

Find amore recent version at Firebird 5.0 Language Reference: SIN()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns an angle's sine. The argument must be given in radians.
Result type: DOUBLE PRECISION

Syntax:
SIN (angl e)

* Any non-NULL result is—obviously —in therange [-1, 1].

Important

If the external function SI N is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

SINH()

Tip

Find amore recent version at Firebird 5.0 Language Reference: SINH()

Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns the hyperbolic sine of the argument.

Result type: DOUBLE PRECISION

163

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-math.html#fblangref50-scalarfuncs-sin
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-math.html#fblangref50-scalarfuncs-sinh

Internal functions

Syntax:

SI NH (nurber)

Important

If the external function SI NH is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

SQRT()

Tip

Find amore recent version at Firebird 5.0 Language Reference: SORT()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the sguare root of the argument.

Result type: DOUBLE PRECISION
Syntax:

SQRT (numrber)

I mportant

If the external function SQRT is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

SUBSTRING()

Tip

Find a more recent version at Firebird 5.0 L anguage Reference: SUBSTRING()

Availablein: DSQL, PSQL
Added in: 1.0

Changedin: 2.0,2.1,2.1.5

Description: Returns a string's substring starting at the given position, either to the end of the string or with
agiven length.

Result type: VARCHAR(n) or BLOB

le4

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-math.html#fblangref50-scalarfuncs-sqrt
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-substring

Internal functions

Syntax:
SUBSTRI NG (str FROM startpos [FOR | ength])

Thisfunction returns the substring starting at character position st ar t pos (thefirst position being 1). Without
the FOR argument, it returns all the remaining characters in the string. With FOR, it returns| engt h characters
or the remainder of the string, whichever is shorter.

InFirebird 1.x, st art pos and| engt h must be integer literals. In 2.0 and above they can be any valid integer
expression.

Starting with Firebird 2.1, this function fully supports binary and text BLOBSs of any length and character set. If
str isaBLOB, theresult isalso aBLOB. For any other argument type, the resultisaVARCHAR(N). Previoudly,
the result type used to be CHAR(n) if the argument was a CHAR(Nn) or astring literal.

For non-BLOB arguments, the width of the result field is always equal to the length of st r, regardless of
startpos and | engt h. So, substring(' pi nhead" from 4 for 2) will return a VARCHAR(7)
containing the string ' he' .

If any argument is NULL, the result isNULL.

Bugs

e |If str isaBLOB and the | engt h argument is not present, the output is limited to 32767 characters.
Workaround: with long BLOBS, aways specify char_length(st r) — or a sufficiently high integer — as the
third argument, unless you are sure that the requested substring fits within 32767 characters.

This bug, which also existsin Firebird 2.5, has been fixed for versions 2.1.5 and 2.5.1.

e A bug in Firebird 2.0 which caused the function to return “false emptystrings’ if st art pos or | engt h
was NULL, has been fixed.

Example:

i nsert into AbbrNames(Abbr Nane)
sel ect substring(LongNane from1 for 3) from LongNanes

Warning

When used on a BLOB, this function may need to load the entire object into memory. Although it does try to
limit memory consumption, this may affect performance if huge BLOBs are involved.

TAN()

Tip

Find amore recent version at Firebird 5.0 Language Reference: TAN()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns an angle's tangent. The argument must be given in radians.

165

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-math.html#fblangref50-scalarfuncs-tan

Internal functions

Result type: DOUBLE PRECISION
Syntax:

TAN (angl e)

Important

If the external function TAN is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

TANH()

Tip

Find amore recent version at Firebird 5.0 Language Reference: TANH()

Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returns the hyperbolic tangent of the argument.

Result type: DOUBLE PRECISION
Syntax:

TANH (number)

» Dueto rounding, any non-NULL result isin therange [-1, 1] (mathematically, it's<-1, 1>).

I mportant

If the external function TANH is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

TRIM()

Tip

Find a more recent version at Firebird 5.0 L anguage Reference: TRIM ()

Availablein: DSQL, PSQL
Added in: 2.0

Changedin: 2.1

Description: Removes leading and/or trailing spaces (or optionally other strings) from the input string. Since
Firebird 2.1 this function fully supports text BLOBs of any length and character set.

166

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-math.html#fblangref50-scalarfuncs-tanh
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-trim

Internal functions

Result type: VARCHAR(n) or BLOB
Syntax:

TRIM ([<adj ust>] str)

<adj ust > = {[where] [what]} FROM
wher e 1= BOTH | LEADI NG | TRAI LI NG /* default is BOTH */
what ;.= The substring to be renoved (repeatedly if necessary)
fromstr's head and/or tail. Default is ' ' (space).
Examples:
select trim (' WAste no space ') from rdb$dat abase

-- returns 'Waste no space'

select trim(leading from' Waste no space ') from rdb$database
-- returns 'Waste no space

select trim(leading '.' from' \Wiste no space ') from rdb$database
-- returns ' Waste no space
select trim(trailing '!" from'Help!!!l') fromrdb$database

-- returns ' Hel p’

select trim('la" from'lalala | love you Ella') from rdb$database
-- returns ' | love you E'
select trim('la" from'Lalala | love you Ella') fromrdb$dat abase
-- returns 'Lalala | |ove you El'
Notes:

» |fstr isaBLOB, theresultisaBLOB. Otherwise, itisaVARCHAR(n) with n the formal length of st r.

» The substring to be removed, if specified, may not be bigger than 32767 bytes. However, if this substring is
repeated at st r 's head or tail, the total number of bytes removed may be far greater. (The restriction on the
size of the substring will be lifted in Firebird 3.)

Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect
performance if huge BLOBSs are involved.

TRUNC()

Tip

Find amore recent version at Firebird 5.0 Language Reference: TRUNC()

Availablein: DSQL, PSQL

167

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-math.html#fblangref50-scalarfuncs-trunc

Internal functions

Added in: 2.1

Description: Returns the integer part of a number. With the optional scal e argument, the number can be
truncated to powers-of-ten multiples (tens, hundreds, tenths, hundredths, etc.) instead of just integers.

Result type: INTEGER, (scaled) BIGINT or DOUBLE
Syntax:
TRUNC (<number> [, <scal e>])

<nunber >
<scal e>

a numerical expression
an integer specifying the nunber of decimal places
toward which should be truncated, e.g.

2 for truncating to a multiple of 0.01

1 for truncating to multiple of 0.1

0 for truncating to a whol e nunber

-1 for truncating to mul tiple of 10

-2 for truncating to mul tiple of 100

a
a
a
a

Notes:
» |fthescal e argument is present, the result usually has the same scale as the first argument, e.g.

- TRUNC(789.2225, 2) returns 789.2200 (not 789.22)
- TRUNC(345.4, -2) returns 300.0 (not 300)
- TRUNC(-163.41, 0) returns -163.00 (not -163)

Otherwise, the result scaleis O:

- TRUNC(-163.41) returns-163

Important

If you are used to the behaviour of the external function TRUNCATE, please notice that the internal function
TRUNC always truncates toward zero, i.e. upward for negative numbers.

UPPER()

Tip

Find a more recent version at Firebird 5.0 L anguage Reference: UPPER()

Availablein: DSQL, ESQL, PSQL
Added in: IB
Changedin: 2.0, 2.1

Description: Returns the upper-case equivalent of the input string. The exact result depends on the character
set. With ASCII or NONE for instance, only ASCII characters are uppercased; with OCTETS, the entire string is
returned unchanged. Since Firebird 2.1 this function also fully supports text BLOBs of any length and character
set.

168

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-upper

Internal functions

Result type: (VAR)CHAR or BLOB
Syntax:

UPPER (str)
Examples:

sel ect upper(_iso8859 1 'Débécle')
from rdb$dat abase
-- returns 'DEBACLE (before Firebird 2.0: 'DéBACLE')

sel ect upper(_iso8859 1 'Débacle' collate fr_fr)
from r db$dat abase
-- returns ' DEBACLE' , follow ng French uppercasing rules

See also; LOWER

169

Chapter 13

External functions (UDFs)

External functions must be “declared” (made known) to the database before they can be used. Firebird ships
with two external function libraries:

e i b_udf —inherited from InterBase;
» fbudf —anew library using descriptors, present as from Firebird 1.0 (Windows) and 1.5 (Linux).

Users can aso create their own UDF libraries or acquire them from third parties.

abs

Library: ib_udf
Addedin: IB
Better alternative: Internal function ABS()
Description: Returns the absolute value of the argument.
Result type: DOUBLE PRECISION
Syntax:
abs (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON abs
DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_abs' MODULE_NAME 'ib_udf"

aCosS

Library: ib_udf
Addedin: IB
Better alternative: Internal function ACOS()

Description: Returns the arc cosine of the argument.

170

External functions (UDFs)

Result type: DOUBLE PRECISION
Syntax:
acos (numnber)
Declaration:
DECLARE EXTERNAL FUNCTI ON acos
DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_acos' MODULE_NAME 'ib_udf’

addDay

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function DATEADD
Description: Returns the first argument with nunber days added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addday (atinmestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addDay

TI MESTAMP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addDay' MODULE_NAME ' f budf'

addHour

Library: foudf

Added in: 1.0 (Win), 1.5 (Linux)

Better alternative: Internal function DATEADD

Description: Returns the first argument with nunber hours added. Use negative numbers to subtract.
Result type: TIMESTAMP

Syntax:

addhour (atinestanp, nunber)

171

External functions (UDFs)

Declaration:
DECLARE EXTERNAL FUNCTI ON addHour
TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addHour' MODULE_NAME ' f budf'’

addM | I i Second

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function DATEADD
Description: Returns the first argument with nunber milliseconds added. Use negative humbers to subtract.
Result type: TIMESTAMP
Syntax:

addmi | | i second (atinestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addM | |'i Second

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT "addM | |i Second" MODULE_NAME ' f budf’

addM nut e

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function DATEADD
Description: Returnsthe first argument with nunber minutes added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addm nute (atinmestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addM nut e

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addM nute' MODULE _NAME ' f budf'

172

External functions (UDFs)

addMont h

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function DATEADD
Description: Returns the first argument with nunber months added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addnmont h (ati nestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addMont h

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addMont h* MODULE _NAME ' f budf'’

addSecond

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function DATEADD
Description: Returns the first argument with nunber seconds added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addsecond (ati nmestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addSecond

TI MESTAWP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addSecond’" MODULE_NAME ' f budf'

addWeek

Library: fbudf

173

External functions (UDFs)

Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the first argument with nunber weeks added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addweek (atinestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addWeek

TI MESTAWVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addWek' MODULE_NAME ' f budf'’

The DATEADD alternative: The interna function DATEADD, which can replace al the other
add<Dat eTi nePar t > functions, doesn't support WEEK yet. Thiswill berealised in Firebird 2.5. Meanwhile,
you can use DATEADD(7*nunber DAY TO at i nest anp) — or stick with addWeek.

addYear

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function DATEADD
Description: Returnsthe first argument with nunber years added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addyear (atinmestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addYear

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addYear' MODULE_NAME ' f budf'’

ascii _char

Library: ib_udf
Changedin: 1.0, 2.0

Better alternative: Internal function ASCII_CHAR()

174

External functions (UDFs)

Description: Returns the ASCII character corresponding to the integer value passed in.
Result type: VARCHAR(1)
Syntax (unchanged):
ascii_char (intval)
Declaration:

DECLARE EXTERNAL FUNCTI ON ascii _char
| NTEGER NULL
RETURNS CSTRING(1) FREE IT
ENTRY_PO NT ' 1 B_UDF_ascii_char' MODULE_NAME 'ib_udf'

The declaration reflects the fact that the UDF as such returns a 1-character C string, not an SQL
CHAR(1) as stated in the InterBase declaration. The engine will pass the result to the caller as a
VARCHAR(1) though.

TheNULL after INTEGER isan optional addition that becameavailablein Firebird 2. When declared
withthe NULL keyword, theenginewill passaNUL L argument unchanged to the function. Thiscauses
aNULL result, which is correct. Without the NULL keyword (your only option in pre-2.0 versions),
NULL is passed to the function as 0 and the result is an empty string.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:
e ascii_char (0) returnsan empty string in all versions, not a character with ASCII value 0.

» Before Firebird 2.0, the result type was CHAR(1).

asci i _val

Library: ib_udf
Addedin: IB
Better alternative: Internal function ASCII_VAL()
Description: Returnsthe ASCII code of the character passed in.
Result type: INTEGER
Syntax:
ascii_val (ch)
Declaration:
DECLARE EXTERNAL FUNCTI ON asci i _val

CHAR(1)
RETURNS | NTEGER BY VALUE

175

External functions (UDFs)

ENTRY_PO NT ' | B_UDF_ascii_val' MODULE_NAMVE 'ib_udf'

Caution

Because CHAR fields are padded with spaces, an empty string argument will be seen as a space, and yield a
result of 32. Theinternal function Ascll_VAL returns 0 in this case.

asin

Library: ib_udf
Added in: IB
Better alternative: Internal function ASIN()
Description: Returns the arc sine of the argument.
Result type: DOUBLE PRECISION
Syntax:

asi n (nurber)
Declaration:

DECLARE EXTERNAL FUNCTI ON asin

DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_asin' MODULE_NAME ' i b_udf’

at an

Library: ib_udf
Added in: IB
Better alternative: Internal function ATAN()
Description: Returns the arc tangent of the argument.
Result type: DOUBLE PRECISION
Syntax:
atan (numrber)
Declaration:

DECLARE EXTERNAL FUNCTI ON at an
DOUBLE PRECI SI ON

176

External functions (UDFs)

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_atan' MODULE_NAME 'ib_udf'

at an2

Library: ib_udf
Added in: IB
Better alternative: Internal function ATAN2()

Description: Returns the angle whose sine-to-cosine ratio is given by the two arguments, and whose sine and
cosine signs correspond to the signs of the arguments. This allows results across the entire circle, including the
angles -#/2 and #/2.

Result type: DOUBLE PRECISION
Syntax:
atan2 (nunl, nun®)
Declaration:
DECLARE EXTERNAL FUNCTI ON at an2
DOUBLE PRECI SI ON, DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_atan2' MODULE_NAME 'ib_udf'

bi n_and

Library: ib_udf
Addedin: IB
Better alternative: Internal function BIN_AND()
Description: Returns the bitwise AND result of the arguments.
Result type: INTEGER
Syntax:

bi n_and (numl, nun®)
Declaration:

DECLARE EXTERNAL FUNCTI ON bi n_and
| NTEGER, | NTEGER
RETURNS | NTEGER BY VALUE
ENTRY_PO NT ' | B_UDF_bi n_and’ MODULE_NAME 'ib_udf’

177

External functions (UDFs)

bl n_or

Library: ib_udf
Added in: IB
Better alternative: Internal function BIN_OR()
Description: Returns the bitwise OR result of the arguments.
Result type: INTEGER
Syntax:

bi n_or (nunl, nun®)
Declaration:

DECLARE EXTERNAL FUNCTI ON bi n_or

| NTEGER, | NTEGER

RETURNS | NTEGER BY VALUE
ENTRY_POINT ' I B_UDF_bin_or' MODULE_NAME 'ib_udf'

bi n_xor
Library: ib_udf
Addedin: IB
Better alternative: Internal function BIN_XOR()
Description: Returns the bitwise XOR result of the arguments.
Result type: INTEGER
Syntax:
bi n_xor (numl, nunR)
Declaration:
DECLARE EXTERNAL FUNCTI ON bi n_xor
| NTECER, | NTEGER

RETURNS | NTEGER BY VALUE
ENTRY_PO NT ' | B_UDF_bi n_xor' MODULE_NAME 'ib_udf'

ceiling

Library: ib_udf

178

External functions (UDFs)

Added in: IB
Better alternative: Internal function CEIL() / CEILING()
Description: Returns the smallest whole number that is greater than or equal to the argument.
Result type: DOUBLE PRECISION
Syntax:

ceiling (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON cei ling

DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_ceiling’ MODULE_NAME 'ib_udf’

COS

Library: ib_udf
Added in: IB
Better alternative: Internal function COS()
Description: Returns an angle's cosine. The argument must be given in radians.
Result type: DOUBLE PRECISION
Syntax:

cos (angle)
Declaration:

DECLARE EXTERNAL FUNCTI ON cos

DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_cos' MODULE_NAME 'ib_udf'

cosh

Library: ib_udf

Added in: IB

Better alternative: Internal function COSH()

Description: Returns the hyperbolic cosine of the argument.

Result type: DOUBLE PRECISION

179

External functions (UDFs)

Syntax:
cosh (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON cosh
DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_cosh' MODULE_NAME 'ib_udf'

cot

Library: ib_udf
Added in: IB
Better alternative: Internal function COT()
Description: Returns an angle's cotangent. The argument must be given in radians.
Result type: DOUBLE PRECISION
Syntax:

cot (angle)
Declaration:

DECLARE EXTERNAL FUNCTI ON cot

DOUBLE PREC! SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_cot' MODULE_NAME 'ib_udf'

dow

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the day of the week from atimestamp argument. The returned name may be localized.
Result type: VARCHAR(15)
Syntax:
dow (ati mest anp)
Declaration:

DECLARE EXTERNAL FUNCTI ON dow

180

External functions (UDFs)

TI MESTAMP,
VARCHAR(15) RETURNS PARAMETER 2
ENTRY_PO NT ' DOW MODULE_NAME ' f budf"’

See also: sdow

dpower

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function POWER()
Description: Returns x to the y'th power.
Result type: DOUBLE PRECISION
Syntax:
dpower (x, vy)
Declaration:
DECLARE EXTERNAL FUNCTI ON dPower
DOUBLE PRECI SI ON BY DESCRI PTOR, DOUBLE PRECI SI ON BY DESCRI PTCR,
DOUBLE PRECI SI ON BY DESCRI PTOR

RETURNS PARAMETER 3
ENTRY_PO NT ' power' MODULE NAME ' f budf'

floor

Library: ib_udf
Added in: IB
Better alternative: Internal function FLOOR()
Description: Returns the largest whole number that is smaller than or equal to the argument.
Result type: DOUBLE PRECISION
Syntax:
fl oor (nunber)
Declaration:
DECLARE EXTERNAL FUNCTI ON fl oor

DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI SI ON BY VALUE

181

External functions (UDFs)

ENTRY_PO NT ' | B_UDF_fl oor' MODULE_NAME 'ib_udf’

get Exact Ti nest anp

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: CURRENT _TI MESTANMP or ' NOW

Description: Returns the system time with milliseconds precision. This function was added because in pre-2.0
versions, CURRENT_TI MESTAMP always had . 0000 in the fractional part of the second. In Firebird 2.0 and
up it is better to use CURRENT _TI MESTAMP, which now also defaults to milliseconds precision. To measure
timeintervalsin PSQL modules, use' NOW .

Result type: TIMESTAMP
Syntax:
get exactti mest anp()
Declaration:
DECLARE EXTERNAL FUNCTI ON get Exact Ti nest anp

TI MESTAMP RETURNS PARAMETER 1
ENTRY_PO NT ' get Exact Ti nest anp’ MODULE_NAME ' f budf"’

| 64r ound
Seer ound.
| 64t runcat e
Seetruncate.
| n
Library: ib_udf
Added in: IB

Better alternative: Internal function LN()
Description: Returns the natural logarithm of the argument.

Result type: DOUBLE PRECISION

182

External functions (UDFs)

Syntax:
I n (nunber)
Declaration:
DECLARE EXTERNAL FUNCTION | n
DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' I B_UDF_I n' MODULE_NAME 'ib_udf"

| og

Library: ib_udf

Added in: IB

Changed in: 1.5

Better alternative: Internal function LOG()

Description: In Firebird 1.5 and up, | og(x, y) returns the the base-x logarithm of y. In Firebird 1.0.x and
InterBase, it erroneously returns the base-y logarithm of x.

Result type: DOUBLE PRECISION
Syntax (unchanged):
log (x, V)
Declaration (unchanged):
DECLARE EXTERNAL FUNCTI ON | og
DOUBLE PRECI SI ON, DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI SI ON BY VALUE
ENTRY_PO NT ' | B_UDF_| og' MODULE_NAME 'ib_udf"

Warning

If any of your pre-1.5 databases use| og, check your PSQL and application code. It may contain workarounds
to return the right results. Under Firebird 1.5 and up, any such workarounds should be removed or you'll get

wrong results.
| og10
Library: ib_udf
Added in: IB

Better alternative: Internal function LOG10()

Description: Returns the 10-based logarithm of the argument.

183

External functions (UDFs)

Result type: DOUBLE PRECISION

Syntax:

| 0g10 (nunber)
Declaration;

DECLARE EXTERNAL FUNCTI ON | 0g10
DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_| 0g10' MODULE_NAME 'ib_udf"

| ower

Library: ib_udf

Added in: IB

Changed in: 2.0

Better alternative: Internal function LOWER()

Description: Returns the lower-case version of the input string. Please notice that only ASCII characters are
handled correctly. If possible, use the superior internal function LOWER instead.

Result type: VARCHAR(Nn)

Syntax:

"LONER' (str)
Declaration:

DECLARE EXTERNAL FUNCTI ON " LOVER'
CSTRI NG(255) NULL
RETURNS CSTRI NG 255) FREE | T
ENTRY_POI NT ' | B_UDF_| ower' MODULE_NAME 'ib_udf"

The above declaration is from the filei b_udf 2. sql . " LOAER" has been surrounded by double-
quotes because LOWER, being areserved word, cannot be used as an identifier except when quoted.
When you call thefunction, you al so have to add the quotes and use the exact capitalization, otherwise
theinternal functionwill take precedence. (M ost other internal function namesare not reserved words;
in those cases, the external function prevailsif it is declared.)

The NULL after CSTRING(255) is an optional addition that became available in Firebird 2. When
declared with the NULL keyword, the engine will pass a NULL argument unchanged to the function.
Thisleadsto aNULL result, whichiscorrect. Without the NULL keyword (your only optionin pre-2.0
versions), NULL is passed to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.

Notes:

184

External functions (UDFs)

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).

e InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

| pad
Library: ib_udf
Addedin: 1.5
Changedin: 1.5.2, 2.0
Better alternative: Internal function LPAD()
Description: Returns the input string |eft-padded with padchar suntil endl engt h isreached.
Result type: VARCHAR(n)
Syntax:
| pad (str, endlength, padchar)
Declaration:
DECLARE EXTERNAL FUNCTI ON | pad
CSTRI NG(255) NULL, | NTEGER, CSTRING(1) NULL
RETURNS CSTRI NG(255) FREE IT

ENTRY_PO NT ' | B_UDF_| pad’ MODULE_NAME ' i b_udf’

The above declaration is from the filei b_udf 2. sql . The NUL L s after the CSTRING arguments
are an optional addition that became availablein Firebird 2. If an argument is declared with the NULL
keyword, the engine will pass a NULL argument value unchanged to the function. This leads to a
NULL result, which is correct. Without the NULL keyword (your only option in pre-2.0 versions),
NULLs are passed to the function as empty strings and the result isastring with endl engh padchars
(if str isNULL) or acopy of st r itself (if padchar isNULL).

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» When calling this function, make sure endl engt h does not exceed the declared result length.

» If endl engt hislessthan st r'slength, st r istruncated to endl engt h. If endl engt h is negative, the
result isNULL.

* ANULL endl engt h istreated asif it were 0.

» If padchar isempty, orif padchar isNULL and the function has been declared without the NULL keyword
after the last argument, st r isreturned unchanged (or truncated to endl engt h).

185

External functions (UDFs)

» Before Firebird 2.0, the result type was CHAR(n).
* A bug that caused an endlessloop if padchar was empty or NULL has been fixed in 2.0.

e InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

[trim

Library: ib_udf
Changedin: 1.5,1.5.2, 2.0
Better alternative: Internal function TRIM()

Description: Returns the input string with any leading space characters removed. In new code, you are advised
to use the internal function TRIM instead, asit is both more powerful and more versatile.

Result type: VARCHAR(n)
Syntax (unchanged):
[trim(str)
Declaration:
DECLARE EXTERNAL FUNCTION Itrim
CSTRI NG 255) NULL
RETURNS CSTRI NG 255) FREE_IT
ENTRY_POINT ' IB_UDF_Itrim MODULE _NAME 'ib_udf"

The above declaration isfrom thefilei b_udf 2. sql . The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. Thisleadsto a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).
* InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

* InFirebird 1.0.x, thisfunction returned NULL if the input string was either empty or NULL.

nod

Library: ib_udf

186

External functions (UDFs)

Addedin: IB
Better alternative: Internal function MOD()
Description: Returns the remainder of an integer division.
Result type: DOUBLE PRECISION
Syntax:

nmod (a, b)
Declaration:

DECLARE EXTERNAL FUNCTI ON nod

| NTECER, | NTEGER

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_nod' MODULE_NAME ‘i b_udf"

*nul |if

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function NULLIF()

Description: Thefour *nul | i f functions—for integers, bigints, doubles and strings, respectively —each return
the first argument if it is not equal to the second. If the arguments are equal, the functions return NULL.

Result type: Varies, see declarations.
Syntax:
inullif (int1, int2)
i 64nul l'if (bigintl, bigint2)
dnul I'i f (doubl el, doubl e2)
snul |if (stringl, string2)

Asfrom Firebird 1.5, use of the internal function NULLIF is preferred.

Warnings

e Thesefunctions return NULL when the second argument iSNULL, eveniif thefirst argument isaproper val ue.
Thisisawrong result. The NULLIF internal function doesn't have this bug.

e i64nul lif anddnul Iif will returnwrong and/or bizarre resultsif it isnot 100% clear to the engine that
each argument is of the intended type (NUMERIC(18,0) or DOUBLE PRECISION). If in doubt, cast them both

____explicitly to the declared type (see declarationsbelow). |

Declarations:

DECLARE EXTERNAL FUNCTION inullif
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS | NT BY DESCRI PTOR
ENTRY_PO NT "i Nul ['1f' MODULE_NAME ' f budf’

187

External functions (UDFs)

DECLARE EXTERNAL FUNCTI ON i 64nul | i f
NUMERI C(18, 4) BY DESCRI PTOR, NUMERI C(18,4) BY DESCRI PTOR
RETURNS NUMERI C(18, 4) BY DESCRI PTOR
ENTRY_PO NT "iNul Il f* MODULE_NAME ' f budf"’

DECLARE EXTERNAL FUNCTI ON dnul |i f
DOUBLE PRECI SI ON BY DESCRI PTOR, DOUBLE PRECI SI ON BY DESCRI PTOR
RETURNS DOUBLE PRECI SI ON BY DESCRI PTOR
ENTRY_PO NT " dNul I I f* MODULE_NAME ' f budf'’

DECLARE EXTERNAL FUNCTI ON snul | i f
VARCHAR(100) BY DESCRI PTOR, VARCHAR(100) BY DESCRI PTOR,
VARCHAR(100) BY DESCRI PTOR RETURNS PARAMETER 3
ENTRY_POI NT 'sNul | [f' MODULE_NAME ' f budf'

*nvl

Library: foudf

Added in: 1.0 (Win), 1.5 (Linux)

Better alternative: Internal function COALESCE()

Description: The four nvl functions — for integers, bigints, doubles and strings, respectively — are NULL
replacers. They each return the first argument's value if it isnot NULL. If the first argument is NULL, the value

of the second argument is returned.

Result type: Varies, see declarations.

Syntax:

i nvi (intl, int2)

i 64nvl (bigintl, bigint2)
dnvl (doubl e1l, doubl e2)
snvl (stringl, string2)

Asfrom Firebird 1.5, use of the internal function COALESCE is preferred.

Warning

i 64nvl and dnvl will return wrong and/or bizarre resultsif it is not absolutely clear to the engine that each
argument is of the intended type (NUMERIC(18,0) or DOUBLE PRECISION). If in doubt, cast both arguments

explicitly to the declared type (see declarations below).

Declarations;

DECLARE EXTERNAL FUNCTI ON i nvl
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS | NT BY DESCRI PTOR
ENTRY_PO NT 'idNvl' MODULE_NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON i 64nvl
NUMERI C(18, 0) BY DESCRI PTOR, NUMERI C(18, 0) BY DESCRI PTOR

188

External functions (UDFs)

RETURNS NUMERI C(18, 0) BY DESCRI PTOR
ENTRY_PO NT 'idNvl' MODULE _NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON dnvl
DOUBLE PRECI SI ON BY DESCRI PTOR, DCUBLE PRECI SI ON BY DESCRI PTOR

RETURNS DOUBLE PRECI SI ON BY DESCRI PTOR
ENTRY_PO NT 'idNvl' MODULE_NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON snvl
VARCHAR(100) BY DESCRI PTOR, VARCHAR(100) BY DESCRI PTOR,
VARCHAR(100) BY DESCRI PTOR RETURNS PARAMETER 3
ENTRY_PO NT 'sNvl' MODULE_NAME ' f budf'

pI

Library: ib_udf
Addedin: IB
Better alternative: Internal function PI()
Description: Returns an approximation of the value of #.
Result type: DOUBLE PRECISION
Syntax:

pi ()
Declaration:

DECLARE EXTERNAL FUNCTI ON pi

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_pi' MODULE_NAME 'ib_udf’

rand

Library: ib_udf
Changedin: 2.0
Better alternative: Internal function RAND()

Description: Returns a pseudo-random number. Before Firebird 2.0, this function would first seed the random
number generator with the current time in seconds. Multiple r and() calls within the same second would
therefore return the same value. If you want that old behaviour in Firebird 2 and up, use sr and() .

Result type: DOUBLE PRECISION

Syntax:

rand ()

189

External functions (UDFs)

Declaration:

DECLARE EXTERNAL FUNCTI ON r and
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' I B_UDF_rand' MODULE_NAME 'ib_udf'

right

Seesright.

round, 1 64r ound

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Changedin: 1.5,2.1.3

Better alternative: Internal function ROUND()

Description: Thesefunctionsreturn thewhole number that isnearest to their (scaled numeric/decimal) argument.
They do not work with floats or doubles.

Result type: INTEGER / NUMERIC(18,4)

Syntax:

round (nunber)
i 64round (bi gnunber)

Caution

Halves are always rounded upward, i.e. away from zero for positive numbers and toward zero for negative
numbers. For instance, 3. 5 isroundedto4, but - 3. 5 isroundedto- 3. Theinternal function ROUND, available
since Firebird 2.1, rounds al halves away from zero.

Bug alert
Inversions 2.1, 2.1.1 and 2.1.2, these functions are broken for negative numbers:

» Anything between 0 and -0.6 (that's right: -0.6, not -0.5) is rounded to O.
Anything between -0.6 and -1 isrounded to +1 (plus 1).

Anything between -1 and -1.6 is rounded to -1.

Anything between -1.6 and -2 is rounded to -2.

Etcetera

Fixed in 2.1.3.

190

External functions (UDFs)

Declarations:
In Firebird 1.0.x, the entry point for both functionsisr ound:
DECLARE EXTERNAL FUNCTI ON Round
I NT BY DESCRI PTOR, | NT BY DESCRI PTCR

RETURNS PARAMETER 2
ENTRY_PO NT ' round" MODULE_NAME ' f budf®

DECLARE EXTERNAL FUNCTI ON i 64Round
NUMERI C(18, 4) BY DESCRI PTOR, NUMERI C(18,4) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' round' MODULE_NAME ' f budf'’

In Firebird 1.5, the entry point has been renamed to f br ound:
DECLARE EXTERNAL FUNCTI ON Round
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR

RETURNS PARAMETER 2
ENTRY_PO NT ' fbround'" MODULE_NAME ' f budf'’

DECLARE EXTERNAL FUNCTI ON i 64Round
NUMERI C(18, 4) BY DESCRI PTOR, NUMERI C(18, 4) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_POI NT ' f bround' MODULE_NAME ' f budf

If you move an existing database from Firebird 1.0.x to 1.5 or higher, drop any existing *r ound
and *t r uncat e declarations and declare them anew, using the updated entry point names. From
Firebird 2.0 onward you can also perform this update with ALTER EXTERNAL FUNCTION.

r pad

Library: ib_udf
Addedin: 1.5
Changedin: 1.5.2, 2.0
Better alternative: Internal function RPAD()
Description: Returns the input string right-padded with padchar suntil endl engt h isreached.
Result type: VARCHAR(n)
Syntax:

rpad (str, endlength, padchar)
Declaration:

DECLARE EXTERNAL FUNCTI ON r pad

CSTRING(255) NULL, | NTEGER, CSTRING(1) NULL

RETURNS CSTRI NG(255) FREE I T
ENTRY_PO NT ' | B_UDF_rpad’ MODULE_NAME 'ib_udf’

191

External functions (UDFs)

The above declaration is from the filei b_udf 2. sql . The NUL L s after the CSTRING arguments
are an optional addition that became availablein Firebird 2. If an argument is declared with the NULL
keyword, the engine will pass a NULL argument value unchanged to the function. This leads to a
NULL result, which is correct. Without the NULL keyword (your only option in pre-2.0 versions),
NULL s are passed to the function as empty strings and the result isa string with endl engh padchars
(if str isNULL) or acopy of st r itself (if padchar isNULL).

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» When calling this function, make sure endl engt h does not exceed the declared result length.

» If endl engt hislessthan st r'slength, st r istruncated to endl engt h. If endl engt h is negative, the
result isNULL.

* A NULL endl engt h istreated asif it wereO.

» |f padchar isempty, or if padchar isNULL and the function has been declared without the NULL keyword
after the last argument, st r is returned unchanged (or truncated to endl engt h).

» Before Firebird 2.0, the result type was CHAR(n).
» A bug that caused an endless loop if padchar was empty or NULL has been fixed in 2.0.

e InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

rtrim

Library: ib_udf
Changedin: 1.5,1.5.2,2.0
Better alternative: Internal function TRIM()

Description: Returns the input string with any trailing space characters removed. In new code, you are advised
to use the internal function TRIM instead, as it is both more powerful and more versatile.

Result type: VARCHAR(n)
Syntax (unchanged):
rtrim(str)
Declaration:
DECLARE EXTERNAL FUNCTION rtrim
CSTRI NG&(255) NULL

RETURNS CSTRI NG(255) FREE I T
ENTRY_PO NT ' IB_UDF rtrim MODULE_NAME 'ib_udf’

192

External functions (UDFs)

The above declaration isfrom thefilei b_udf 2. sql . The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. Thisleadsto a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).
* InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

» InFirebird 1.0.x, thisfunction returned NULL if the input string was either empty or NULL.

sdow

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the abbreviated day of the week from a timestamp argument. The returned abbreviation
may be localized.

Result type: VARCHAR(5)
Syntax:
sdow (ati nest anp)
Declaration:
DECLARE EXTERNAL FUNCTI ON sdow
Tl MESTAWP,
VARCHAR(5) RETURNS PARAMETER 2
ENTRY_PO NT ' SDOW MODULE _NAME ' f budf'

See also: dow

Si gn
Library: ib_udf
Added in: IB
Better alternative: Internal function SIGN()

Description: Returns the sign of the argument: -1, O or 1.

193

External functions (UDFs)

Result type: INTEGER
Syntax:
sign (nurber)
Declaration:
DECLARE EXTERNAL FUNCTI ON sign
DOUBLE PRECI SI ON

RETURNS | NTEGER BY VALUE
ENTRY_PO NT ' | B_UDF_si gn' MODULE_NAME ' i b_udf’

sin

Library: ib_udf
Added in: IB
Better alternative: Internal function SIN()
Description: Returns an angle's sine. The argument must be given in radians.
Result type: DOUBLE PRECISION
Syntax:

sin (angle)
Declaration:

DECLARE EXTERNAL FUNCTI ON sin

DOUBLE PREC! SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POINT ' I B_UDF_sin' MODULE_NAME 'ib_udf'

Si nh
Library: ib_udf
Added in: IB
Better alternative: Internal function SINH()
Description: Returns the hyperbolic sine of the argument.
Result type: DOUBLE PRECISION
Syntax:

si nh (nunber)

194

External functions (UDFs)

Declaration:
DECLARE EXTERNAL FUNCTI ON si nh
DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_si nh' MODULE_NAME 'ib_udf"

sgrt

Library: ib_udf
Addedin: IB
Better alternative: Internal function SQRT()
Description: Returns the square root of the argument.
Result type: DOUBLE PRECISION
Syntax:

sqrt (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON sqrt

DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_sqrt' MODULE_NAME 'ib_udf’

sr and

Library: ib_udf
Added in: 2.0

Description: Seeds the random number generator with the current time in seconds and then returns the first
number. Multiplesr and() callswithinthe samesecondwill returnthe samevalue. Thisisexactly howr and()
behaved before Firebird 2.0.

Result type: DOUBLE PRECISION
Syntax:

srand ()
Declaration:

DECLARE EXTERNAL FUNCTI ON srand
RETURNS DOUBLE PRECI SI ON BY VALUE
ENTRY_PO NT ' | B_UDF_srand’ MODULE_NAME 'ib_udf’

195

External functions (UDFs)

sri ght

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function RIGHT()

Description: Returnsthe rightmost nunthar s characters of the input string. Only works with 1-byte character
sets.

Result type: VARCHAR(100)
Syntax:
sright (str, nunthars)
Declaration:
DECLARE EXTERNAL FUNCTI ON sri ght
VARCHAR(100) BY DESCRI PTOR, SMALLI NT,

VARCHAR(100) BY DESCRI PTOR RETURNS PARAMETER 3
ENTRY_POI NT 'right' MODULE_NAME ' f budf’

string2bl ob

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function CAST()
Description: Returns the input string as a BLOB.
Result type: BLOB
Syntax:
string2blob (str)
Declaration:
DECLARE EXTERNAL FUNCTI ON string2bl ob
VARCHAR(300) BY DESCRI PTOR,

BLOB RETURNS PARAMETER 2
ENTRY_PO NT 'string2bl ob' MODULE _NAME ' f budf'

strl en

Library: ib_udf

196

External functions (UDFs)

Addedin: IB
Better alternatives: Internal functions BIT LENGTH(), CHAR[ACTER] _LENGTH and OCTET_LENGTH()
Description: Returns the length of the argument string.
Result type: INTEGER
Syntax:

strlen (str)
Declaration:

DECLARE EXTERNAL FUNCTI ON strlen

CSTRI NG(32767)

RETURNS | NTEGER BY VALUE
ENTRY_POINT ' | B_UDF_strlen' MODULE _NAME 'ib_udf’

substr

Library: ib_udf
Changedin: 1.0,1.5.2,2.0

Description: Returns a string's substring from st ar t pos to endpos, inclusively. Positions are 1-based. If
endpos ispast theend of the string, subst r returnsall the charactersfromst ar t pos to the end of the string.
This function only works correctly with single-byte characters.

Result type: VARCHAR(n)
Syntax (unchanged):

substr (str, startpos, endpos)
Declaration:

DECLARE EXTERNAL FUNCTI ON subst r
CSTRI NG(255) NULL, SMALLINT, SMALLI NT
RETURNS CSTRI NG(255) FREE I T
ENTRY_POI NT ' | B_UDF_substr' MODULE_NAME 'ib_udf'

The above declaration isfrom thefilei b_udf 2. sql . The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. Thisleadsto a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULL s to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

197

External functions (UDFs)

» Before Firebird 2.0, the result type was CHAR(n).
* InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

* IninterBase, subst r returned NULL if endpos lay past the end of the string.

Tip

Although the function arguments are dlightly different, consider using the internal SQL function SUBSTRING
instead, for better compatibility and multi-byte character set support.

substrl en

Library: ib_udf

Added in: 1.0

Changedin: 1.5.2, 2.0

Better alternative: Internal function SUBSTRING()

Description: Returns the substring starting at st ar t pos and having | engt h characters (or less, if the end of
the string is reached first). Positions are 1-based. If either st art pos or | engt h issmaller than 1, an empty
string is returned. This function only works correctly with single-byte characters.

Result type: VARCHAR(N)
Syntax:
substrlen (str, startpos, |ength)
Declaration:
DECLARE EXTERNAL FUNCTI ON substrl en
CSTRI NG 255) NULL, SMALLINT, SMALLI NT

RETURNS CSTRI NG(255) FREE I T
ENTRY_POI NT ' | B_UDF_substrlen' MODULE_NAME 'ib_udf"

The above declaration isfrom thefilei b_udf 2. sql . The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. Thisleadsto a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).

198

External functions (UDFs)

* InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

Tip

Firebird 1.0 has aso implemented the internal SQL function SUBSTRING, effectively rendering substrl en
obsolete in the same version in which it was introduced. SUBSTRING also supports multi-byte character sets.
In new code, use SUBSTRING.

tan

Library: ib_udf
Addedin: IB
Better alternative: Internal function TAN()
Description: Returns an angle's tangent. The argument must be given in radians.
Result type: DOUBLE PRECISION
Syntax:

tan (angle)
Declaration:

DECLARE EXTERNAL FUNCTI ON tan

DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_tan' MODULE_NAME 'ib_udf"

t anh

Library: ib_udf
Added in: IB
Better alternative: Internal function TANH()
Description: Returns the hyperbolic tangent of the argument.
Result type: DOUBLE PRECISION
Syntax:
tanh (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON t anh

199

External functions (UDFs)

DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI SI ON BY VALUE
ENTRY_PO NT ' | B_UDF_tanh' MODULE_NAME 'ib_udf’

truncate,i 64truncat e

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)
Changedin: 1.5,2.1.3

Better alternative: Internal function TRUNC()

Description: These functionsreturn the whole-number portion of their (scaled numeric/decimal) argument. They
do not work with floats or doubles.

Result type: INTEGER / NUMERIC(18)

Syntax:

truncate (nunber)
i 64t runcat e (bi gnunber)

Caution

Both functions round to the nearest whole number that is lower than or equal to the argument. This means that
negative numbers are also “truncated” downward. For instance, t r uncat e(- 2. 37) returns- 3. Theinternal
function TRUNC, available since Firebird 2.1, always truncates toward zero.

Bug alert

Contrary to what's mentioned above, in versions 2.1, 2.1.1 and 2.1.2 anything between -1 and 0 is truncated to
0. Thisanomaly has been corrected in Firebird 2.1.3 and above.

Declarations:
In Firebird 1.0.x, the entry point for both functionsist r uncat e:

DECLARE EXTERNAL FUNCTI ON Truncate
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT 'truncate' MODULE NAME ' fbudf'

DECLARE EXTERNAL FUNCTI ON i 64Truncat e
NUMERI C(18) BY DESCRI PTOR, NUMERI C(18) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT 'truncate' MODULE NAME ' fbudf'

In Firebird 1.5, the entry point has been renamed to f bt r uncat e:

DECLARE EXTERNAL FUNCTI ON Truncate
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR

200

External functions (UDFs)

RETURNS PARAMETER 2
ENTRY PO NT ' fbtruncate' MODULE NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON i 64Truncat e
NUMERI C(18) BY DESCRI PTOR, NUMERI C(18) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' fbtruncate' MODULE NAME ' f budf'

If you move an existing database from Firebird 1.0.x to 1.5 or higher, drop any existing *r ound
and *t r uncat e declarations and declare them anew, using the updated entry point names. From
Firebird 2.0 onward you can a so perform this update with ALTER EXTERNAL FUNCTION.

201

Appendix A:
Notes

Character set NONE data accepted “as is”
In Firebird 1.5.1 and up

Firebird 1.5.1 has improved the way character set NONE data are moved to and from fields or variables with
another character set, resulting in fewer trandliteration errors.

In Firebird 1.5.0, from a client connected with character set NONE, you could read data in two incompatible
character sets — such as SJIS (Japanese) and WIN1251 (Russian) — even though you could not read one of those
character sets while connected from a client with the other character set. Data would be received “asis’ and
be stored without raising an exception.

However, from this character set NONE client connection, an attempt to update any Russian or Japanese
data columns using either parameterized queries or literal strings without introducer syntax would fail with
trandliteration errors; and subsequent queries on the stored “NONE” data would similarly fail.

In Firebird 1.5.1, both problems have been circumvented. Data received from the client in character set NONE
are still stored “asis’ but what is stored isan exact, binary copy of the received string. In the reverse case, when
stored data are read into this client from columns with specific character sets, there will be no tranditeration
error. When the connection character set isNONE, no attempt ismade in either case to resolve the string to well-
formed characters, so neither the write nor the read will throw atranditeration error.

This opens the possibility for working with data from multiple character sets in a single database, as long as
the connection character set is NONE. The client has full responsibility for submitting strings in the appropriate
character set and converting strings returned by the engine, as needed.

Abstraction layers that have to manage this can read the low byte of the sql subt ype field in the XSQLVAR
structure, which contains the character set identifier.

While character set NONE literals are accepted and implicitly stored in the character set of their context, the
use of introducer syntax to coerce the character sets of literals is highly recommended when the application
is handling literals in a mixture of character sets. This should avoid the string's being misinterpreted when the
application shifts the context for literal usage to a different character set.

Note

Coercion of the character set, using the introducer syntax or casting, is still reguired when handling
heterogeneous character sets from aclient context that is anything other than NONE. Both methods are shown
below, using character set 1508859 _1 as an example target. Noticethe“_" prefix in the introducer syntax.

Introducer syntax:
_1'SC8B859 1 nystring

Casting:
L CAST (nystring AS VARCHAR(n) CHARACTER SET |SMW859 1) |

202

Notes

Understanding the WITH LOCK clause

This note looks a little deeper into explicit locking and its ramifications. The WITH LOCK feature, added in
Firebird 1.5, provides alimited explicit pessimistic locking capability for cautious use in conditions where the
affected row set is:

a. extremely small (idedly, asingleton), and
b. precisely controlled by the application code.

Pessimistic locks are rarely needed in Firebird. This is an expert feature, intended for use by those who
thoroughly understand its consequences. Knowledge of the various levels of transaction isolation is essential.
WITH LOCK is available in DSQL and PSQL, and only for top-level, single-table SELECTS. As stated in the
reference part of this guide, WITH LOCK is not available:

* inasubquery specification;

o forjoined sets;

» with the DISTINCT operator, a GROUP BY clause or any other aggregating operation;
e withaview;

» with the output of a selectable stored procedure;

» with an externa table.

Syntax and behaviour

SELECT ... FROM single_table
[WHERE . . .]
[FOR UPDATE [OF ...]]

[WTH LOCK]

If the WITH LOCK clause succeeds, it will secure alock on the selected rows and prevent any other transaction
from obtaining write access to any of those rows, or their dependants, until your transaction ends.

If the FOR UPDATE clause is included, the lock will be applied to each row, one by one, asit is fetched into
the server-side row cache. It becomes possible, then, that a lock which appeared to succeed when requested
will nevertheless fail subsequently, when an attempt is made to fetch a row which becomes locked by another
transaction.

Asthe engine considers, in turn, each record falling under an explicit lock statement, it returns either the record
version that is the most currently committed, regardliess of database state when the statement was submitted,
or an exception.

Wait behaviour and conflict reporting depend on the transaction parameters specified in the TPB block:

Table A.1. How TPB settings affect explicit locking

TPB mode Behaviour
isc_tpb_consistency Explicit locks are overridden by implicit or explicit table-level locks and are
ignored.
isC_tpb_concurrency If arecord is modified by any transaction that was committed since the
transaction attempting to get explicit lock started, or an active transaction has

203

Notes

TPB mode Behaviour
+isc_tpb_nowait performed a modification of this record, an update conflict exception is raised
immediately.
isC_tpb_concurrency If therecord is modified by any transaction that has committed since the
_ _ transaction attempting to get explicit lock started, an update conflict exception is
+isc_tpb_wait raised immediately.

If an active transaction is holding ownership on thisrecord (via explicit locking
or by anormal optimistic write-lock) the transaction attempting the explicit lock
waits for the outcome of the blocking transaction and, when it finishes, attempts
to get the lock on the record again. This means that, if the blocking transaction
committed a modified version of this record, an update conflict exception will be
raised.

isc_tpb_read_committed | If thereisan active transaction holding ownership on this record (via explicit

locking or normal update), an update conflict exception is raised immediately.
+isc_tpb_nowait

isc_tpb_read committed | If thereis an active transaction holding ownership on this record (via explicit
locking or by a normal optimistic write-lock), the transaction attempting the
+isc_tpb_wait explicit lock waits for the outcome of blocking transation and when it finishes,
attempts to get the lock on the record again.

Update conflict exceptions can never be raised by an explicit lock statement in
this TPB mode.

How the engine deals with WITH LOCK

When an UPDATE statement triesto accessarecord that islocked by another transaction, it either raisesan update
conflict exception or waitsfor the locking transaction to finish, depending on TPB mode. Engine behaviour here
isthe same asif thisrecord had already been modified by the locking transaction.

No special gdscodes are returned from conflicts involving pessimistic locks.

The engine guarantees that al records returned by an explicit lock statement are actually locked and do meet
the search conditions specified in WHERE clause, as long as the search conditions do not depend on any other
tables, viajoins, subqueries, etc. It also guaranteesthat rows not meeting the search conditionswill not be locked
by the statement. It can not guarantee that there are no rows which, though meeting the search conditions, are
not locked.

Note

This situation can arise if other, parallel transactions commit their changes during the course of the locking
statement's execution.

The engine locks rows at fetch time. This has important consequences if you lock several rows at once. Many
access methods for Firebird databases default to fetching output in packets of a few hundred rows (“buffered
fetches’). Most data access components cannot bring you the rows contained in the last-fetched packet, where
an error occurred.

204

Notes

The optional “OF <col um- nanmes>" sub-clause

The FOR UPDATE clause provides a technique to prevent usage of buffered fetches, optionally with the “OF
<col um- names>" subclause to enable positioned updates.

Tip

Alternatively, it may be possible in your access components to set the size of the fetch buffer to 1. Thiswould
enableyou to process the currently-locked row before the next isfetched and locked, or to handle errors without
rolling back your transaction.

Caveats using WITH LOCK

* Roalling back of an implicit or explicit savepoint releases record locks that were taken under that savepoint,
but it doesn't notify waiting transactions. Applications should not depend on this behaviour as it may get
changed in the future.

» While explicit locks can be used to prevent and/or handle unusual update conflict errors, the volume of
deadlock errors will grow unless you design your locking strategy carefully and control it rigorously.

» Most applications do not need explicit locks at al. The main purposes of explicit locks are (1) to prevent
expensive handling of update conflict errors in heavily loaded applications and (2) to maintain integrity of
objects mapped to arelational database in aclustered environment. If your use of explicit locking doesn't fall
in one of these two categories, then it's the wrong way to do the task in Firebird.

» Explicit locking is an advanced feature; do not misuseit! While solutions for these kinds of problems may be
very important for web sites handling thousands of concurrent writers, or for ERP/CRM systems operating
in large corporations, most application programs do not need to work in such conditions.

Examples using explicit locking
i. Smple

SELECT * FROM DOCUMENT VWHERE | D=? W TH LOCK
ii. Multiple rows, one-by-one processing with DSQL cursor:

SELECT * FROM DOCUMENT VWHERE PARENT_I D=7
FOR UPDATE W TH LOCK

A note on CSTRING parameters

External functions involving strings often use the type CSTRING(n) in their declarations. This type represents
a zero-terminated string of maximum length n. Most of the functions handling CSTRINGS are programmed in
such away that they can accept and return zero-terminated strings of any length. So why the n? Because the
Firebird engine has to set up space to process the input an output parameters, and convert them to and from
SQL data types. Most strings used in databases are only dozens to hundreds of bytes long; it would be a waste

205

Notes

to reserve 32 KB of memory each time such a string is processed. Therefore, the standard declarations of most
CSTRING functions—as found in the filei b_udf . sql — specify alength of 255 bytes. (In Firebird 1.5.1 and
below, this default length is 80 bytes.) As an example, here's the SQL declaration of | pad:

DECLARE EXTERNAL FUNCTI ON | pad
CSTRI NG(255), | NTEGER, CSTRI NG(1)
RETURNS CSTRI NG(255) FREE I T
ENTRY_POI NT ' | B_UDF_| pad’ MODULE_NAME 'ib_udf"

Once you've declared a CSTRING parameter with a certain length, you cannot call the function with a longer
input string, or cause it to return astring longer than the declared output length. But the standard declarations are
just reasonabl e defaults; they're not cast in concrete, and you can change them if you want to. If you haveto | eft-
pad strings of up to 500 byteslong, then it's perfectly OK to change both 255'sin the declaration to 500 or more.

A special caseiswhen you usually operate on short strings (say lessthen 100 bytes) but occasionally haveto call
the function with a huge (VAR)CHAR argument. Declaring CSTRING(32000) makes sure that al the callswill be
successful, but it will also cause 32000 bytes per parameter to be reserved, even in that majority of cases where
the strings are under 100 bytes. In that situation you may consider declaring the function twice, with different
names and different string lengths:

DECLARE EXTERNAL FUNCTI ON | pad
CSTRI NG(100), | NTEGER, CSTRI NG(1)
RETURNS CSTRI NG(100) FREE I T
ENTRY_POINT ' | B_UDF_| pad' MODULE_NAME 'ib_udf';

DECLARE EXTERNAL FUNCTI ON | padbi g
CSTRI NG(32000), | NTEGER, CSTRI NG(1)
RETURNS CSTRI NG(32000) FREE | T
ENTRY_POI NT ' | B_UDF_| pad' MODULE_NAME 'ib_udf';

Now you cancal | pad() foral thesmall stringsand | padbi g() for the occasional monster. Notice how the
declared names in the first line differ (they determine how you call the functions from within your SQL), but
the entry point (the function name in the library) is the same in both cases.

Passing NULL to UDFs in Firebird 2

If apre-2.0 Firebird engine must pass an SQL NULL argument to a user-defined function, it always converts it
to azero-equivalent, e.g. anumerical 0 or an empty string. The only exception to this rule are UDFs that make
use of the “BY DESCRIPTOR” mechanism introduced in Firebird 1. Thef budf library uses descriptors, but the
vast mgjority of UDFs, including thosein Firebird'sstandardi b_udf library, still usethe old style of parameter
passing, inherited from InterBase.

As a conseguence, most UDFs can't tell the difference between NULL and zero input.

Firebird 2 comes with a somewhat improved calling mechanism for these old-style UDFs. The engine will now
pass NULL input as anull pointer to the function, if the function has been declared to the database with aNULL
keyword after the argument(s) in question, e.g. like this:

decl are external function Itrim
cstring(255) null
returns cstring(255) free_it
entry point '"IB UDF Itrim nodule_nane 'ib_udf';

206

Notes

This requirement ensures that existing databases and their applications can continue to function like before.
Leave out the NULL keyword and the function will behave like it did under Firebird 1.5 and earlier.

Please note that you can't just add NULL keywordsto your declarations and then expect every function to handle
NULL input correctly. Each function has to be (re)written in such a way that NULLs are dealt with correctly.
Alwayslook at the declarations provided by the function implementor. For the functionsinthei b_udf library,
consulti b_udf 2. sql inthe Firebird UDF directory. Notice the 2 in the file name; the old-style declarations
areini b_udf . sql .

These arethei b_udf functions that have been updated to recognise NULL input and handle it properly:

e ascii_char

e | ower

e | padandr pad

e [trimandrtrim

e substr andsubstrl en

Mosti b_udf functions remain asthey were; in any case, passing NULL to an old-style UDF is never possible
if the argument isn't of areferenced type.

On aside note: don't usel ower, . t ri mand subst r * in new code; use the internal functions LOWER, TRIM
and SUBSTRING instead.

“Upgrading” i b_udf functions in an existing database

If you are using an existing database with one or more of thefunctionslisted aboveunder Firebird 2, and you want
to benefit from the improved NULL handling, run the script i b_udf _upgr ade. sqgl against your database. It
islocated in the Firebird m sc\ upgr ade\i b_udf directory.

Maximum number of indices
In different Firebird versions

Between Firebird 1.0 and 2.0 there have been quite a few changes to the maximum number of indices per
database table. The table below sumsthem al up.

Table A.2. Max. indices per tablein Firebird 1.0-2.0

Page Firebird version(s)
size

1.0,1.0.2 1.0.3 1.5.x 2.0x

lcol | 2cols| 3cols| 1col | 2cols| 3cols| 1col | 2cols| 3cols| 1col | 2cols | 3cols

1024 62 50 41 62 50 41 62 50 41 50 35 27

2048 65 65 65 126 101 84 126 101 84 101 72 56

4096 65 65 65 254 203 169 254 | 203 169 203 145 113

8192 65 65 65 510 408 340 257 257 257 408 291 227

16384 | 65 65 65 1022 | 818 681 257 257 257 818 584 | 454

207

Notes

The RDB$VALID_ BLR field

Thefield RDB$VALID_BLR wasadded to the system tablesRDBSPROCEDURES and RDB$TRIGGERS i n Firebird
2.1. Its purpose is to signa possible invaidation of a PSQL module when a domain upon which the module
dependsis altered.

If adomain's definition is changed, RDB$VALID_BLR will be set to 0 for any procedure or trigger whose code
is no longer valid. The following query will find the modules that depend on the domain and report the state
of their RDB$VALID_BLR fields:

select * from(

sel ect 'Procedure', rdb$procedure_nane, rdb$valid blr fromrdb$procedures

uni on

select 'Trigger', rdb$trigger_nane, rdb$valid_blr fromrdb$triggers
) (type, name, valid)
where exists

(select * from rdb$dependenci es

wher e rdb$dependent _nane = nane and rdb$depended_on_nane = ' MYDOVAI N)

/* Replace MYDOVAIN with the actual domain nane. Use all-caps if the domain
was created case-insensitively. Qtherwi se, use the exact capitalisation. */

Unfortunately, not all PSQL invalidationswill bereflectedintheRDB$VALID_BLRfield. Itisthereforeadvisable
to have a good look at all the procedures and triggers reported by the above query, even those having alin
the “VALID” column.

Please notice that for PSQL modules inherited from earlier Firebird versions (including a number of system
triggers, even if the database was created under Firebird 2.1 or higher), RDB$VALID_BLR is NULL. This does
not imply that their BLR isinvalid.

The isgl commands SHOW PROCEDURES and SHOW TRIGGERS flag modules whose RDB$VALID_BLR field
is zero with an asterisk. SHOW PROCEDURE PROCNAME and SHOW TRIGGER TRI GNAME, which display
individual PSQL modules, do not signal invalid BLR.

208

Appendix B:
Document History

The exact file history is recorded in the manual module in our CV S tree; see http:/firebird.cvs.sourceforge.

net/viewvc/firebird/manual/

Revision History

0.9 10 Jul 2009 PV First publication, based on the Firebird 2.0 Language Reference
Update with almost all the changes for 2.1 added (roughly adding 50%
tothe size).

1.0 9 Dec 2010 PV GLOBAL: Renamed all “Deprecated in” section headersto “ Better

alternative’. This also required editing the text immediately following
the header and in some cases additional text in the section (if the
“deprecation” was discussed in the section body).

Bookinfo: Added 2.1.4 to covered versions.

Introduction :: Subject matter: Added “ Aggregate functions’ to first
list.

Introduction :: Versions covered: Added 2.1.4.

Introduction :: Authorship: Edited first paragraph. Added Frank
Ingermann and Vlad Khorsun to contributor list.

Introduction: Removed sections Compl eteness and Miscellaneous
notes.

Data types and subtypes :: BLOB data type :: Text BLOB compatibility
with VARCHAR: Replaced this subsection, which was incorrect, with
Text BLOB support in functions and operators.

Data types and subtypes :: BLOB data type :: Various enhancements:
Added information on bi nar y mnemonic (new in 2.0) + extra
example.

Data types and subtypes :: New collations :: A note on the UTF8
collations: Added information on UNICODE_CI.

DDL statements :: COLLATION :: DROP COLLATION: Edited
Description.

DDL statements:: DATABASE :: CREATE DATABASE: Moved Syntax
one level up and added DIFFERENCE FILE clause. Added new
subsection DIFFERENCE FILE parameter.

DDL statements:: DATABASE :: ALTER DATABASE: Merged difference
file clauses onto one line in Syntax.

DDL statements:: DOMAIN :: ALTER DOMAIN: Added Warning about
changing domains referred in PSQL code.

DDL statements:: FILTER :: DECLARE FILTER: Edited Description.
Added user _def i ned to Syntax. Added more info under Syntax
block and made it an itemizedlist. Converted Tip to formal para User-
defined mnemonics.

DDL statements :: PROCEDURE :: CREATE PROCEDURE: Added NOT
NULL to syntax block; added comment about character sets to syntax
block.

209

http://firebird.cvs.sourceforge.net/viewvc/firebird/manual/
http://firebird.cvs.sourceforge.net/viewvc/firebird/manual/

Document History

DDL statements :: PROCEDURE :: CREATE PROCEDURE :: Domains
instead of datatypes: Renamed to Domains supported in parameter
and variable declarations. Added Warning about changing domain
definitions.

DDL statements :: PROCEDURE :: CREATE PROCEDURE: Added
subsection NOT NULL in variable and parameter declarations.

DDL statements :: PROCEDURE :: ALTER PROCEDURE :: Domains
instead of datatypes: Renamed to Domains supported in parameter and
variable declarations.

DDL statements :: PROCEDURE :: ALTER PROCEDURE: Added
subsection NOT NULL in variable and parameter declarations.

DDL statements :: TABLE :: CREATE TABLE :: GENERATED ALWAYS
AS Added Note about it not being supported in index definitions.

DDL statements:: TABLE :: CREATE TABLE: Added subsection
FOREIGN KEY without target column references PK.

DDL statements :: TABLE :: ALTER TABLE: Added subsection FOREIGN
KEY without target column references PK.

DDL statements:: TABLE :: ALTER TABLE: Added subsection
GENERATED ALWAYSAS,

DDL statements:: TRIGGER :: CREATE TRIGGER: Added subsection
NOT NULL in variable declarations.

DDL statements:: TRIGGER :: ALTER TRIGGER: Added subsection
NOT NULL in variable declarations.

DDL statements:: VIEW :: CREATE VIEW :: Full SELECT syntax
supported: Mentioned that in Fb 2.5 the column list becomes optional
also for union views.

DDL statements:: VIEW :: CREATE VIEW :: PLAN subclause disallowed
in 1.5: Changed title to PLAN subclause disallowed in 1.5, reallowed in
2.0.

DML statements :: DELETE: Corrected formal syntax (col umms ->
val ues). Corrected syntax note about WHERE CURRENT OF.

DML statements :: DELETE: Added subsection COLLATE subclause for
text BLOB columns.

DML statements :: DELETE: Added subsection Relation alias makes
real name unavailable.

DML statements :: DELETE :: RETURNING: Improved Description.
DML statements :: EXECUTE BLOCK: Added NOT NULL support for in/
out/local PSQL vars (added “Changed in” formalpara, updated syntax
block, added subsection).

DML statements :: EXECUTE BLOCK :: Domains instead of datatypes:
Extended Description. Added Warning about collations.

DML statements :: INSERT: Corrected formal syntax (col umm_I i st -
>val ue_l i st).

DML statements :: INSERT :: RETURNING: Improved Description.
DML statements :: MERGE: Mentioned CTE in description and created
links.

DML statements :: SELECT :: Common Table Expressions: Edited
Description, Syntax and Notes.

DML statements:: SELECT :: Table alias must be used if present:
Renamed to Relation alias makes real name unavailable and moved

to before ROWS subsection. Also changed Description and paragraph
before last example.

210

Document History

DML statements :: UPDATE: Corrected formal syntax (col ums ->
val ues). Corrected syntax note about WHERE CURRENT OF.

DML statements :: UPDATE: Added subsection COLLATE subclause for
text BLOB columns.

DML statements :: UPDATE: Added subsection Relation alias makes
real name unavailable.

DML statements :: UPDATE :: RETURNING: Improved Description.
DML statements :: UPDATE OR INSERT: Corrected formal syntax

(col ums ->val ues). Edited first two subitems of second Note.
PSQL statements :: DECLARE: Added NOT NULL to Syntax. Added
Syntax note about including a character set.

PSQL statements :: DECLARE :: DECLARE ... CURSOR: Edited first
Note and placed it last. Added a subsequent note about the effects of
variable changes during loop execution.

PSQL statements :: DECLARE :: DECLARE with DOMAIN instead of
datatype: Added Warning about changing domain definitions.

PSQL statements :: DECLARE: Added subsection NOT NULL in variable
declaration.

PSQL statements:: FOR SELECT ... INTO ... DO: Edited Syntax note and
added a second note about the effects of variable changes during loop
execution.

Context variables :: CURRENT_CONNECTI ON: Improved Description.
Context variables :: CURRENT _TI ME: Edited description. Removed
Note and added Notes formalpara.

Context variables :: CURRENT _TI MESTAMP: Edited description.
Removed Note and added Notes formalpara.

Context variables :: CURRENT_TRANSACTI ON: Improved
Description.

Context variables:: ' NOW : Removed Note and added Notes
formalpara.

Operators and predicates :: || (string concatenator): New subsections
Text BLOB concatenation and Result type VARCHAR or BLOB.
Operators and predicates :: || (string concatenator) :: Overflow
checking: Corrected “Changed in” and Description.

Aggregate functions :: LIST(): Extended 1st and 2nd second listitems
under Syntax. Inserted new listitem about BLOB support in 3rd
position. Edited 5th (previously 4th) listitem. Added warning on
truncation bug.

Aggregate functions :: MAX(): New section.

Aggregate functions :: MIN(): New section.

Internal functions: Replaced all occurrences of “obfuscate” in the
function sections with “override”.

Internal functions:: ASCII_VAL(): Edited Syntax. Added listitem about
NULL. Altered last listitem.

Internal functions:: ATAN2(): Replaced argument names nuni and
nun? withy and x, respectively. Changed wording of 3rd Syntax note.
Added two Notes.

Internal functions:: BIT_LENGTH(): Added formalparas “ Changed in”
and “BLOB support”. Edited Note after Syntax block and placed it after
Description.

211

Document History

Internal functions:: CAST(): Edited Changed in, Description and
Syntax. Worked BLOB into table. Added paragraphs and examples re.
casting to adomain. Added formalpara “Casting BLOBS'.

Internal functions:: CHAR LENGTH(), CHARACTER _LENGTH(): Added
formalparas “ Changed in” and “BLOB support”. Edited Note after
Syntax block and placed it after Description.

Internal functions :: EXTRACT(): Edited Result type and everything
following the Syntax block, except the WEEK subsection.

Internal functions:: HASH(): Mentioned full text BLOB support in
Description.

Internal functions:: LEFT(): Edited Result type. Edited first listitem
and inserted a new listitem before it (about BLOB support).

Internal functions:: LOWER(): Added “Changed in”. Mentioned BLOB
support in Description. Added BLOB as result type and corrected
VAR(CHAR) -> (VAR)CHAR.

Internal functions:: LPAD(): Replaced ' ' with “the empty string” in
2nd (now 4th) Syntax note. Inserted two new Syntax notes concerning
BLOB support. Changed 1st sentence of Tip. Added Warning about
possible high memory usage.

Internal functions :: MAXVALUE(): Mentioned full text BLOB support in
Description.

Internal functions :: MINVALUE(): Mentioned full text BLOB support in
Description.

Internal functions:: OCTET_LENGTH(): Added formalparas “ Changed
in” and “BLOB support”. Edited Note after Description.

Internal functions:: OVERLAY(): Edited Result type. Edited first
listitem under Syntax and inserted another one before it, about BLOB
support. Also added alistitem about NULL arguments. Added Warning
about possible high memory usage.

Internal functions:: POSTION(): Added “(1-based)” to Description.
Added two listitems after Syntax. Added Warning about possible high
memory usage.

Internal functions :: RDB$SGET_CONTEXT(): Replaced “general” with
“global” (4x) in System namespace table.

Internal functions :: REPLACE(): Edited Result type. Inserted new

first listitem under Syntax and edited the previous first (now 2nd)
listitem. Added example with NULL first argument. Aligned arguments
in examples. Corrected last const ant element, which accidentally
spanned three lines instead of a single word. Added Warning about
possible high memory usage.

Internal functions:: RIGHT(): Edited Result type. Edited first listitem
and inserted a new listitem before it (about BLOB support and bug).
Added Warning about possible high memory usage.

Internal functions:: RPAD(): Replaced' ' with “the empty string” in
2nd (now 4th) Syntax note. Inserted two new Syntax notes concerning
BLOB support. Changed 1st sentence of Tip. Added Warning about
possible high memory usage.

Internal functions:: SUBSTRING(): Added 2.1 to “Changed in”.
Changed Result type. Edited Syntax. Rewrote most everything between
Syntax and Examples. Added Warning about possible high memory

usage.

212

Document History

11

?7? Xxx 2017?

PV

Internal functions:: TRIM(): Added “Changed in”. Edited Description
and Syntax. Corrected and extended Result type. Added Notes
formalpara. Added Warning about possible high memory usage.
Internal functions:: UPPER(): Added 2.1 to “Changed in”. Edited
Description (BLOB support). Added BLOB as result type and corrected
VAR(CHAR) -> (VAR)CHAR.

External functions:: addDay, addHour ,addM | | i Second,
addM nut e, addMont h, addSecond, addYear : Added “Better
aternative: Internal function DATEADD” formalpara.

External functions :: addWeek: Added formalpara*“The DATEADD
aternative’.

External functions:: get Exact Ti mest anp: Edited “Better
aternative” and Description.

External functions:: | og: Changed | og ->1 og(x, y) in Description.
External functions:: | ower : Removed “new” from Description and
text under Declaration.

External functions:: r and: Remaoved “the new function” from
Description.

External functions:: st ri ng2bl ob: Added “Better aternative”
formalpara.

Notes :: Understanding the WITH LOCK clause :: Syntax and
behaviour: Intable, aligned 1st column left, al rowstop, and added
periods to sentencesin first two rows.

License Notice: Added Frank Ingermann and Vlad Khorsun as
contributors. (C) end year now 2010.

Introduction :: Subject matter: Changed ulink to Firebird
Documentation Index (both text and url).

Data types and subtypes :: BLOB data type :: Text BLOB support in
functions and operators: Altered “Changed in”; edited 2nd listitem
under “Level of support” (CORE-3233 fixed).

DDL statements :: COLLATION :: CREATE COLLATION: Altered
explanation of “UNI” in specific attributes table; gave table body
valign=top.

DDL statements :: DATABASE :: ALTER DATABASE :: END BACKUP:
Updated URL of Firebird Documentation Index in Tip.

DDL statements :: DOMAIN :: ALTER DOMAIN: Replaced contents of
Warning with reference to RDB$VALID_BLR note.

DDL statements :: PROCEDURE: Changed introductory text (mentioned
executable blocks).

DDL statements :: PROCEDURE :: CREATE PROCEDURE :: Domains
supported in parameter and variable declarations: Edited and extended
Description. Replaced contents of Warning with reference to RDB
$VALID_BLR note.

DDL statements :: PROCEDURE :: CREATE PROCEDURE :: NOT NULL
in variable and parameter declarations. Changed layout of Example
(first line too long for PDF).

DML statements :: DELETE: Improved formal syntax (val ues ->
<val ues> and added specification of |atter).

DML statements :: INSERT: Improved formal syntax (val ue ->

val ue_expr essi on) and removed erroneous space.

DML statements :: SELECT: New subsection [AS] beforerelation alias.

213

Document History

DML statements :: SELECT :: ROWS Removed illegal first ORDER BY
from UNION example and compacted layout. Edited the “When used
with aUNION...” para (further down in this section) accordingly.

DML statements :: UPDATE: Improved formal syntax (val ues ->
<val ues> and added specification of |atter).

PSQL statements: Changed introductory paragraph to mention
executable blocks.

PSQL statements :: DECLARE :: DECLARE with DOMAIN instead of
datatype: Extended Description. Replaced contents of Warning with
reference to RDBSVALID_BLR note.

PSQL statements :: EXECUTE STATEMENT :: Any number of data rows
returned: Improved Syntax block.

Context variables :: GDSCODE: Rewrote Description in light of new, so
far undocumented behaviour since Firebird 2.0 (!). Corrected Example:
after WHEN GDSCODE a symbolic name must follow, not a number.
Added notice after Example to explain same.

Context variables :: SQLCODE: Added “Changed in” formalpara.
Rewrote Description in light of new, so far undocumented behaviour
since Firebird 2.0 (!).

Aggregate functions :: LIST(): Added “Changed in” formalpara. Edited
second Syntax note (about separator).

Internal functions:: ATAN2(): Edited 3rd Syntax note (mentioned error
raised in Fb 3).

Internal functions:: CAST() :: Casting to a domain or itstype: Added
Warning about casts becoming invalid after altering the domain.
Internal functions :: EXTRACT(): Corrected millisecond range in table
(0.0000 -> 0.0).

Internal functions:: LOG(): Under listing of weird behaviour/bugs,
added notice that thisis going to changein 2.5.

Internal functions:: LOG10(): Edited listitem under Syntax.

Internal functions:: LOWER(): Replaced Important after Syntax with
Note, with different text.

Internal functions:: LPAD(): Added “Changed in”. Altered result type.
Altered 2nd listitem after Syntax. Altered Tip.

Internal functions:: OVERLAY(): Edited 1st listitem under Syntax (bug
fixed for 2.1.5).

Internal functions :: RDB$GET_CONTEXT(): Added

ENG NE_VERSI ON context var.

Internal functions:: RPAD(): Added “Changed in”. Altered result type.
Altered 2nd listitem after Syntax. Altered Tip.

Internal functions:: SUBSTRING(): Added 2.1.5to “Changed in”. Noted
fixing of first bugin2.1.5and 2.5.1.

External functions:: | ower : Dropped last sentence from Description.
Altered first paragraph after Declaration block and removed comment.
Notes. New section The RDB$VALID_BLR field. This note contains the
(edited!) text previously contained in the Warnings in ALTER DOMAIN,
CREATE PROCEDURE :: Domains supported in parameter and variable
declarations and DECLARE :: DECLARE with DOMAIN instead of
datatype.

Document history: Link to CV S changed, points directly to manual
module now.

License Notice: (C) end year now 2011.

214

Document History

12 4 Oct 2024 MR Added links to Firebird 5.0 Language Reference as more recent
documentation

215

Appendix C:
License notice

The contents of this Documentation are subject to the Public Documentation License Version 1.0 (the
“License”); you may only use this Documentation if you comply with the terms of this License. Copies of the
License are available at http://www.firebirdsgl.org/pdfmanual/pdl.pdf (PDF) and http://www.firebirdsgl.org/
manual/pdl.html (HTML).

The Original Documentation istitled Firebird 2.1 Language Reference Update.
The Initial Writers of the Original Documentation are: Paul Vinkenoog et al.
Copyright (C) 2008-2024. All Rights Reserved. Initial Writers contact: paul at vinkenoog dot nl.

Writers and Editors of included PDL -licensed material (the“al.”) are: J. Beesley, Helen Borrie, Arno Brinkman,
Frank Ingermann, Vlad Khorsun, Alex Peshkov, Nickolay Samofatov, Adriano dos Santos Fernandes, Dmitry
Y emanov, Mark Rottevee!.

Included portions are Copyright (C) 2001-2024 by their respective authors. All Rights Reserved.

216

http://www.firebirdsql.org/pdfmanual/pdl.pdf
http://www.firebirdsql.org/manual/pdl.html
http://www.firebirdsql.org/manual/pdl.html

	Firebird 2.1 Language Reference Update
	Table of Contents
	Introduction
	Subject matter
	Versions covered
	Authorship

	Reserved words and keywords
	Added since InterBase 6
	Newly reserved words
	New keywords

	Dropped since InterBase 6
	No longer reserved
	No longer keywords

	Possibly reserved in future versions

	Miscellaneous language elements
	-- (single-line comment)
	Shorthand casts
	CASE construct
	Simple CASE
	Searched CASE

	Data types and subtypes
	BIGINT data type
	BLOB data type
	Text BLOB support in functions and operators
	Various enhancements

	New character sets
	Character set NONE handling changed
	New collations
	Unicode collations for all character sets

	DDL statements
	COLLATION
	CREATE COLLATION
	DROP COLLATION

	COMMENT
	DATABASE
	CREATE DATABASE
	16 Kb page size supported, 1 and 2 Kb deprecated
	DIFFERENCE FILE parameter

	ALTER DATABASE
	BEGIN BACKUP
	END BACKUP
	ADD DIFFERENCE FILE
	DROP DIFFERENCE FILE

	DOMAIN
	CREATE DOMAIN
	Context variables as defaults

	ALTER DOMAIN
	Rename domain
	SET DEFAULT to any context variable

	EXCEPTION
	CREATE EXCEPTION
	Message length increased

	CREATE OR ALTER EXCEPTION
	RECREATE EXCEPTION

	EXTERNAL FUNCTION
	DECLARE EXTERNAL FUNCTION
	BY DESCRIPTOR parameter passing
	RETURNS PARAMETER n

	ALTER EXTERNAL FUNCTION

	FILTER
	DECLARE FILTER

	INDEX
	CREATE INDEX
	UNIQUE indices now allow NULLs
	Indexing on expressions
	Maximum index key length increased
	Maximum number of indices per table increased

	Privileges: GRANT and REVOKE
	REVOKE ADMIN OPTION

	PROCEDURE
	CREATE PROCEDURE
	Domains supported in parameter and variable declarations
	COLLATE in variable and parameter declarations
	NOT NULL in variable and parameter declarations
	Default argument values
	BEGIN ... END blocks may be empty

	ALTER PROCEDURE
	Default argument values
	COLLATE in variable and parameter declarations
	Domains supported in parameter and variable declarations
	NOT NULL in variable and parameter declarations
	Restriction on altering used procedures

	CREATE OR ALTER PROCEDURE
	DROP PROCEDURE
	Restriction on dropping used procedures

	RECREATE PROCEDURE
	Restriction on recreating used procedures

	SEQUENCE or GENERATOR
	CREATE SEQUENCE
	CREATE GENERATOR
	CREATE SEQUENCE preferred
	Maximum number of generators significantly raised

	ALTER SEQUENCE
	SET GENERATOR
	DROP SEQUENCE
	DROP GENERATOR

	TABLE
	CREATE TABLE
	Global Temporary Tables (GTTs)
	GENERATED ALWAYS AS
	CHECK accepts NULL outcome
	Context variables as column defaults
	FOREIGN KEY without target column references PK
	FOREIGN KEY creation no longer requires exclusive access
	UNIQUE constraints now allow NULLs
	USING INDEX subclause

	ALTER TABLE
	ADD column: Context variables as defaults
	ALTER COLUMN: DROP DEFAULT
	ALTER COLUMN: SET DEFAULT
	ALTER COLUMN: POSITION now 1-based
	CHECK accepts NULL outcome
	FOREIGN KEY without target column references PK
	FOREIGN KEY creation no longer requires exclusive access
	GENERATED ALWAYS AS
	UNIQUE constraints now allow NULLs
	USING INDEX subclause

	RECREATE TABLE

	TRIGGER
	CREATE TRIGGER
	SQL-2003-compliant syntax for relation triggers
	Database triggers
	Domains instead of datatypes
	COLLATE in variable declarations
	NOT NULL in variable declarations
	Multi-action triggers
	BEGIN ... END blocks may be empty
	CREATE TRIGGER no longer increments table change count
	PLAN allowed in trigger code

	ALTER TRIGGER
	Database triggers
	Domains instead of datatypes
	COLLATE in variable declarations
	NOT NULL in variable declarations
	Multi-action triggers
	Restriction on altering used triggers
	PLAN allowed in trigger code
	ALTER TRIGGER no longer increments table change count

	CREATE OR ALTER TRIGGER
	DROP TRIGGER
	Restriction on dropping used triggers
	DROP TRIGGER no longer increments table change count

	RECREATE TRIGGER
	Restriction on recreating used triggers

	VIEW
	CREATE VIEW
	Per-column aliases supported in view definition
	Full SELECT syntax supported
	PLAN subclause disallowed in 1.5, reallowed in 2.0
	Triggers on updatable views block auto-writethrough
	View with non-participating NOT NULL columns in base table can be made insertable

	RECREATE VIEW

	DML statements
	DELETE
	COLLATE subclause for text BLOB columns
	ORDER BY
	PLAN
	Relation alias makes real name unavailable
	RETURNING
	ROWS

	EXECUTE BLOCK
	COLLATE in variable and parameter declarations
	NOT NULL in variable and parameter declarations
	Domains instead of datatypes

	EXECUTE PROCEDURE
	INSERT
	INSERT ... DEFAULT VALUES
	RETURNING clause
	UNION allowed in feeding SELECT

	MERGE
	SELECT
	Aggregate functions: Extended functionality
	Mixing aggregate functions from different contexts
	Aggregate functions and GROUP BY items inside subqueries
	Subqueries inside aggregate functions
	Nesting aggregate function calls
	Aggregate statements: Stricter HAVING and ORDER BY

	[AS] before relation alias
	COLLATE subclause for text BLOB columns
	Common Table Expressions (“WITH ... AS ... SELECT”)
	Recursive CTEs

	Derived tables (“SELECT FROM SELECT”)
	FIRST and SKIP
	GROUP BY
	Grouping by alias, position and expressions

	HAVING: Stricter rules
	JOIN
	Ambiguous field names rejected
	CROSS JOIN
	Named colums JOIN
	Natural JOIN

	ORDER BY
	Order by colum alias
	Ordering by column position causes * expansion
	Ordering by expressions
	NULLs placement
	Stricter ordering rules with aggregate statements

	PLAN
	Handling of user PLANs improved
	ORDER with INDEX
	PLAN must include all tables

	Relation alias makes real name unavailable
	ROWS
	UNION
	UNIONs in subqueries
	UNION DISTINCT

	WITH LOCK

	UPDATE
	COLLATE subclause for text BLOB columns
	ORDER BY
	PLAN
	Relation alias makes real name unavailable
	RETURNING
	ROWS

	UPDATE OR INSERT

	Transaction control statements
	RELEASE SAVEPOINT
	ROLLBACK
	ROLLBACK RETAIN
	ROLLBACK TO SAVEPOINT

	SAVEPOINT
	Internal savepoints
	Savepoints and PSQL

	SET TRANSACTION
	IGNORE LIMBO
	LOCK TIMEOUT
	NO AUTO UNDO

	PSQL statements
	BEGIN ... END blocks may be empty
	BREAK
	CLOSE cursor
	DECLARE
	DECLARE ... CURSOR
	DECLARE [VARIABLE] with initialization
	DECLARE with DOMAIN instead of datatype
	COLLATE in variable declaration
	NOT NULL in variable declaration

	EXCEPTION
	Rethrowing a caught exception
	Providing a custom error message

	EXECUTE PROCEDURE
	EXECUTE STATEMENT
	No data returned
	One row of data returned
	Any number of data rows returned
	Caveats with EXECUTE STATEMENT

	EXIT
	FETCH cursor
	FOR EXECUTE STATEMENT ... DO
	FOR SELECT ... INTO ... DO
	AS CURSOR clause

	LEAVE
	OPEN cursor
	PLAN allowed in trigger code
	UDFs callable as void functions
	WHERE CURRENT OF valid again for view cursors

	Context variables
	CURRENT_CONNECTION
	CURRENT_ROLE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	CURRENT_TRANSACTION
	CURRENT_USER
	DELETING
	GDSCODE
	INSERTING
	NEW
	'NOW'
	OLD
	ROW_COUNT
	SQLCODE
	UPDATING

	Operators and predicates
	NULL literals allowed as operands
	|| (string concatenator)
	Text BLOB concatenation
	Result type VARCHAR or BLOB
	Overflow checking

	ALL
	NULL literals allowed
	UNION as subselect

	ANY / SOME
	NULL literals allowed
	UNION as subselect

	IN
	NULL literals allowed
	UNION as subselect

	IS [NOT] DISTINCT FROM
	NEXT VALUE FOR
	SOME

	Aggregate functions
	LIST()
	MAX()
	MIN()

	Internal functions
	ABS()
	ACOS()
	ASCII_CHAR()
	ASCII_VAL()
	ASIN()
	ATAN()
	ATAN2()
	BIN_AND()
	BIN_OR()
	BIN_SHL()
	BIN_SHR()
	BIN_XOR()
	BIT_LENGTH()
	CAST()
	CEIL(), CEILING()
	CHAR_LENGTH(), CHARACTER_LENGTH()
	COALESCE()
	COS()
	COSH()
	COT()
	DATEADD()
	DATEDIFF()
	DECODE()
	EXP()
	EXTRACT()
	MILLISECOND
	WEEK

	FLOOR()
	GEN_ID()
	GEN_UUID()
	HASH()
	IIF()
	LEFT()
	LN()
	LOG()
	LOG10()
	LOWER()
	LPAD()
	MAXVALUE()
	MINVALUE()
	MOD()
	NULLIF()
	OCTET_LENGTH()
	OVERLAY()
	PI()
	POSITION()
	POWER()
	RAND()
	RDB$GET_CONTEXT()
	RDB$SET_CONTEXT()
	REPLACE()
	REVERSE()
	RIGHT()
	ROUND()
	RPAD()
	SIGN()
	SIN()
	SINH()
	SQRT()
	SUBSTRING()
	TAN()
	TANH()
	TRIM()
	TRUNC()
	UPPER()

	External functions (UDFs)
	abs
	acos
	addDay
	addHour
	addMilliSecond
	addMinute
	addMonth
	addSecond
	addWeek
	addYear
	ascii_char
	ascii_val
	asin
	atan
	atan2
	bin_and
	bin_or
	bin_xor
	ceiling
	cos
	cosh
	cot
	dow
	dpower
	floor
	getExactTimestamp
	i64round
	i64truncate
	ln
	log
	log10
	lower
	lpad
	ltrim
	mod
	*nullif
	*nvl
	pi
	rand
	right
	round, i64round
	rpad
	rtrim
	sdow
	sign
	sin
	sinh
	sqrt
	srand
	sright
	string2blob
	strlen
	substr
	substrlen
	tan
	tanh
	truncate, i64truncate

	A. Notes
	Character set NONE data accepted “as is”
	Understanding the WITH LOCK clause
	Syntax and behaviour
	How the engine deals with WITH LOCK
	The optional “OF <column-names>” sub-clause
	Caveats using WITH LOCK
	Examples using explicit locking

	A note on CSTRING parameters
	Passing NULL to UDFs in Firebird 2
	“Upgrading” ib_udf functions in an existing database

	Maximum number of indices in different Firebird versions
	The RDB$VALID_BLR field

	B. Document History
	C. License notice

