Firebird 1.5 Language Reference Update

Everything new in Firebird SQL since InterBase 6

Paul Vinkenoog et al.
4 Oct 2024, document version 1.3 — covers Firebird 1.0-1.5.6

Firebird 1.5 Language Reference Update

Everything new in Firebird SQL since InterBase 6

4 Oct 2024, document version 1.3 — covers Firebird 1.0-1.5.6
Paul Vinkenoog et al.

Table of Contents

O 1 11 L o1 oo USRS 1
RV = o o0 = o SR 1

L U110] o O P PP PPP PP PPPPRPPRPRIN 2

B = < V<o BTV o L USRI 3
Added in 1.0 But remOVEd 1N 1.5 ..ot 3
AdAEd 1N 1.0 NG 1.5 ..o e e e e e e e e e e e e 3

TO be added iN FULUIE VEISIONSoiiiiiiiieeiiieee ettt e e e e s e e s nnneeeenn 4

3. Miscellaneous 1aNgUAJE ElEIMENLEScuiiiiiiiiiie et e e e s e e e e e eas 5
== (SINGIE-TINE COMMIBNT) ...ttt e e e e e e e e s e e s annneeas 5

[| (SEFING CONCBLENGLON) ..eeiutteeeeiiieee e ettt et et et e e et e e e e e e e e e e e e st e e e e e e e e e e e annne e e e ennees 5
OVEITIOW CRECKING ...t e s 5
SNOMTNANGA CASLS ...ttt e e e e e ettt e e e e e e e e ettt e e e eeaeesaannnebeeeeeaaeesaansnnneeeeaaeenans 6
CASE CONSIIUCT ...ceetieieeeee ettt e e ettt s s e e e e e e eee e s e e e e eeeeeebaa s e e aaeseenss s seeeeeseeensnnnnaaaaaaeeeennnns 7
SIMPIE CASE .ottt ettt e e et e e e e et e e e et e et e e e e e e e e s 7

S o010 7 N PSR 8

4. Data types and SUBLYPESoooiiiiiieeiiiiee ettt e e e e e e e e e e e e e e e aan 9
BIGINT GBEA LY ...teeeeiiiiie e e ettt ettt e ettt e e et e e e s e e e e e s e e e e e e b e e e e e e nne e e e e enrne e e s annneeas 9
NEW ChEIBCIEN SEES ...t e s e e e s b e e e e e e e e e e e e nnnes 9
Character set NONE handling Changedooooiiiiiiiiiiec e 10
AN YA ol P o] SR 10

5. DDLU SEBEEIMENTS ...t 12
ALTER DOMAIN ittt ettt ettt e ekttt e e et e oo e b e e e 21 s e e e e e s e e e e e s b e e e e e e nnn e e e e annn e e e e nanes 12

S =0T [0 1 0 o RS 12

SET DEFAULT t0 any CONteXt Variablecoeiiiiiiiiieiieec e 12

ALTER TABLE .ceeitiiitiit ettt ettt e ekt e oot e e e sttt e e e Rt e e e e b e e e e e nn e e e e e nnr e e e e nnre e e e 13
ADD column: Context variables as defaults ..o 13

ALTER COLUMN: POSITION NOW 1-D8SEdooiiiiiiiiiiiiiicceee e 13

FOREIGN KEY without target column referenCes PKoooiiiiiiieiiiiiiee e 13

UNIQUE constraints NOW allOW NULLSuvuuuiuiiiiiiiriiiiiiinrninrnrernrnrninrnreennnn ... 14

USING INDEX SUDCIAUSEcoieiieiiiiiee e e e ettt e e e e e e ettt e e e e e e e e s et eeeaeeeeeamneneneeeaaeeeeansnnneeas 14

ALTER TRIGGERiitiiie ittt ettt ettt e et e e ekttt e e e s e e e e e b e e e e e s et e e e annn e e e e e nneeeeennnes 14
MUITI-ACHION TrIGGESeteeeeiitiee ettt et e e e e e e e s e e e e e e e e e anr e e e e e annrneeeanns 15

ALTER TRIGGER no longer increments table change countccccoovieveiiiiiie e 15

PLAN allOWed N triggEr COURuviieiiiiiiee ittt e e e e e e e e 15

CREATE DATABASE ..ottt ettt ekt e et e e ekt e e et e e e e b e e e e e s e e e e e e nre e e e e annreeeeaan 15

16 KD page SIZ€ SUPPOITEAeeeiiiiiiiieiiiiei ettt e a e e e e e s e e e e as 16

CREATE DOMAIN .. ctitee ittt ettt et e e ekt e e o4 s et e e e e s e e e e e st e e e e e e sne e e e e annr e e e e e nnrrneeeann 16
Context variables as JefaUITSooouiiioiii e 16

CREATE GENERATOR ...iiiiiuttiteeiitieeeaaise e e sttt e et e e st a e e skttt e s aass et e e e ansee e e e e annr e e e e e nnn e e e e annneeeaas 16
Maximum number of generators significantly raiSedccooveeiiiiiieeiiiiie e 17

CREATE INDEX ..tttteiutttteeatttte e ettt e e ekttt e e ettt e et e o4 a et e 24kt e e e e as b et e e e s ke e e e e asn et e e e annne e e e e annnneenns 17
UNIQUE iNdiceS NOW @llOW NULLS ...cceviieiiiiiiiiieiiiiieieeceeeeeeeeeeeeeeeeeeseeeeeeeeeeesessssssssssssssassssssesees 17
Maximum number of indices per table INCreasedccooiiiieiiiiiiie e 17

CREATE TABLE ..ottt ettt e et e e et e oot e e e e e be et e e e n e e e e e nne e e e e annrreeeann 18
Context variables as column defauUltSc.eeeiiiiiiiii e 18

FOREIGN KEY without target column referenCes PKoooiiiiiiieiiiiiiee e 18

UNIQUE constraints NOW allOW NULLSuuuvuiuiiiiiiiniiiiiniuininrnrnrnrnrnnrermenrnn..———.n. 19

USING INDEX SUDCIAUSEoieiieiiiieee e e e ettt e e e e e e ettt e e e e e e e e sttt eeeaeeeeeanneaeeeeeaaeeeaansnnneeas 19

CREATE TRIGGERiiiiiiiiiiit ettt ettt e skt e e st e e e b e e e e e e et e e s sn e e e e e nne e e e e nnnnneeeans 20

Firebird 1.5 Language Ref. Update

IO oo o o = £ T PP P PP PUPPPPPPPPPPN 21
CREATE TRIGGER no longer increments table change countcccoooiveeiiiiicciiiieec e 21
PLAN allOWeEd N trIgQEN COURvviieiiiieiie ettt e e e s e e e e e 21
CREATE VIEW ittt ettt ettt ettt ettt ekt ekt 4 ke e 4kt e 4 a b e £ o4 mb et oo a ket e am bt e e aab e e e enb e e e bbeeebneesnnneeen 22
PLAN sUBClaUSe diSAIIOWEDccoiiiiiiiiiiiie e 22
CREATE OR ALTER PROCEDUREcoiiittitaittieaititeastteeastteeateeeateaeanbeeeasbeesasseesanbeesanseesnnnessneeesnnes 22
CREATE OR ALTER TRIGGERutiiiiiiiiiiie ittt e steeestee ettt et e s ste e s be e bt e e smbe e s saae e e saaeeabneeasaeeanes 22
DECLARE EXTERNAL FUNGCTION ...ciiitiiaitieiitteeateeeateeeasteeessseeeasseesasaeeansessseessnseesssseessnseessnneeans 23
BY DESCRIPTOR ParaMELEr PASSING ...eeeeuurrreeriurrreeeiinrreesasrneessasssreessassseeesassssessansesesssnsnseees 23
RETURNS PARAMETER N .ttt eittie ettt ettt st asbe e e amte e e snb e e s st e e e sne e e nneesnnneeennes 23
DROP GENERATOReiittiiettteattee ettt e ate e asteeeaste e e e s se e e see e e bt e e aabe e e aabe e e aabe e e aab e e e aab e e e anbeeebeeeanneeanneas 23
DROP TRIGGEReuttieiutieeaiteeeattee e aitee ettt e abs e e s be e e sbe e e aa bt e e aa bt e e aa b e e e ahb e e e aab e e e ks e e e beeeebeeeanbeeeanneeennes 24
DROP TRIGGER no longer increments table change Countccccveviiiieeniiiee e 24
RECREATE PROCEDUREcciiuttiiittitaittitaatteeaattteaateteateeeateeessbeeesabeeeasbee e aabeeeasbeeaaaseeabseesnneeesnneeens 24
RECREATE TABLE ...ttiittii ittt ettt ettt ettt ekt e ekt e e bb e e e bb e e e bt e e enbe e e e nbe e e anneeeanneas 24
RECREATE VIEW ..ttt ettt ettt ettt ettt ekt ekt e e st e ekt e e kb e e e abe e e e b e e e eab e e e snbe e e enbe e e nnneeennneas 25
6. DML SEBIEIMENTSeiieeeiiiie e ettt e e e e e e e s e e e e e e e s s s e e e e e e e e e sa s s s b re e e e e e e e s s s nnnrrnneeeeeeeaanes 26
EXECUTE PROCEDUREuciiiitiiaittiaaittteastteeateeeateaeamteeeaabeeesateesaabe e e asbeeaasseeaabseeabeeeasbeeesnseeesnneeeas 26
S I O PSPPSR 27
Aggregate functions: Extended fUNCLiONaIITYcooouriiiiiiiiiii e 27
Ambiguous JOIN StEtEMENES MEECLEAoviiiiiiieeiiii e 29

[AS] DEfOre relation @lia@Sccocuuiiiiiiiiee e 30
FIRST @NA SKIP ..ttt ettt ettt ettt ettt e et e e et e e e e st e e e s st e e e emb e e e bt e e e bt e e ennneesnneeas 30
GROUP BY UDF ..tttiettieeatteeattee ettt e abeeeaate e e amte e e aabe e e sabe e e asbe e e amb e e e ahb e e e abb e e e bb e e eabeeesnbeeeenbeeeanneas 31
GROUP BY interna function, column position, and CASEcoovieiiiiieiiee e ee e 32
HAVING: SITCLEN TUIES ...eeiiiiiiiie ettt ettt e e e e e e e e e nnneeeeens 33
ORDER BY: Expressions and NULLS PlaCeMENTeeveiiiiiiieiiiiiiee e 33
ORDER BY': Stricter rules with aggregate StAlEMENTSccvvvieiiiiiiieeiiiiee e 34
WITH LOCK .ttt ettt ettt ettt ettt ekt ettt e et e et et e ea ke e o ab et e e s bt e e e ab e e e emb e e e eab e e e enteeenneeennneas 34

7. Transaction CONLrOl STAIEMENTSveiieiiieee ettt e e e e ettt e e s e e e e s e e e e s anrneeeeanes 36
RELEASE SAVEPOINT ...uitiiiiitieaittteattee ettt e ateeesteeeasteeaasteeaabeeeabeeeaabe e e aabeeesabe e e smbe e e ambeeeanneeaneeeannnas 36
ROLLBACK TO SAVEPOINT ...eiiiiittteeaitieteeaaiteeeeaassseaeaasseeeesassseeeaaasnseaesasseeeeaanseeeeeaannaeeesannneeenas 36
YNV @1 N PRV RURRRR 37
INEErNAl SAVEPOINTSeeiiiee ettt e e e et e e e st e e e snr e e e e e nne e e e s anrnneeeaa 38
SAVEPOINES BNG PSQL ...ttt e e s e e e e et e e e e e e e e ennes 38

8. PSOL SEBIEIMENTS ...eeiiiiiiiiiiiiiiiiiiie ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt et et et ettt e et e ettt eeeeeeeeeeeeeeaeeeeeeeeeeeseeeeeeees 40
BEGIN ... END blOCKS May D& EMPLY ...t 40
BREAK ..ttt ettt ettt ettt a bRt e E b £ e R e £ e E e £ e oAb e e oAb e e oAb et e eR R et e eR b et e R b e e e nee e e nneeenneeenaes 40
DECLARE [VARIABLE] With iNitialiZaHIONccuvviieiiiiiieeeiiiee e 41
EXCEPTION .ttt ettt ettt etttk e ettt e ottt ab e oo et e e e h ke e Rkt e £ eab e e £ kbt e e bb e e e abb e e e bt e e e abe e e anbe e e anbeeennneeens 42
Rethrowing a Caught EXCEPTIONveiieiiiiie et 42
Providing @ CUSLOM EITON IMESSATEvveeeeiitieeeiaitreeeaaitteeeeaaste e e e s asae e e e e snee e e e s anbeeeeeannneeeeannees 42
EXECUTE PROCEDUREutiiiutiiiittiaaitteeaatteeateeeateaeateeeaabeeesateeeaabeeeasbeeeasseesabeeeabeeeanbeeesnseeesnneeeas 43
EXECUTE STATEMENT oiititiiitieeittiearitee et e e te e e te e e e te e e aate e e asbe e e aabe e e asbe e e beeeabseesabeeesnbeeeanbeeesnneeeas 43
NO T8EA FEIUMED ...ttt st e e e st e e e e abb e e e e e e b e e e e e anneeeeeane 43

ONE roOW OF daLA FELUMMEAeeiiieiiitiiee et e e s e e nneee s 44

Any number of data roOWS FEIUMMEouiiiiiiiii e 44
Caveats With EXECUTE STATEMENT ...oiiiiiiiieiiie ettt e s e e 45

3 I PP ROTRPP 45
FOR EXECUTE STATEMENT ... DO ...uitiiiiiiiiiiee ittt sttt e et e e e e e e e 45
FOR SELECT ... INTO ... DO ittt ettt ettt ettt ettt et e st e e sab e e eab e e e bb e e enbe e e enbeeeenbeeeanes 46
AS CURSOR ClAUSEceiiiuitieeeiaitiet e e ettt ee e ettt e e ettt e e et e e e et e e e e e ke et e e e sb et e e e asbe e e e e annn e e e e annnneas 47

Firebird 1.5 Language Ref. Update

I Y P 48
PLAN allOWED 1N TrIQGEN COUR ...ttt e e e e e s e e nnrneeeen 48
L R 000 0\ (= A = A F= o =S PR 49
CURRENT _CONNECTI ON ..., 49
L0 A1 I I 49
CURRENT _TRANSACTT OIN ...uuutuiuuututututueuintueueerneseeesesearsrersreesr...............———————.—.—.——————————————————— 50
L0 1 = 50
[I I I N T 51
(€ DS GO B PO 51
[NV I 1 T 52
ROW COUNT ... 52
S CODE ..o ———— 53
L0 I N PO 53
O F 0\ (= g = I 00T (0 O UUURR 55
COALESCE() evvteteeuteeteeiteeteeteeeteeteeaeeeteeateeseesteeateesaesteeateeaseeteesseeseeabeenseeaseabeenteessesseensessseareeneeans 55
EXTRACT() «veiveeiteeteeteeeteeiteeteeeteeteeteeeteestesseesseeseeaseesbeessesaeeseesseabeenseaseesssenseessebeensessaesteenseaseensens 56
NULLIF() +euteetteeteeete et e et e ete et e e te et e eaeeete et e ebeeebeeateeseeebeeseeeseeebeessesseesteenseesseabeensesaseebeenseesseateentesnneeas 57
SUBSTRING() +uveeuveeureiteeiteeteeteeeteasteeteeeseesteaseeateaseeasseseasseaseensesssesseensessseseensesseesteensesseenteansesseennas 57
11. External fUNCLIONS (UDFS)oiiiiiiiiieeiiieiee ettt et e e e e et e e s e e e e e 59
= Yo [0 1 Y 59
= Lo [0 | 0 11 1 T 59
F= Lo [0 1Y, T S T=Y o2 o] o [60
F= Lo [0 1Y, LU = 60
F= Lo [0 1LY, 0 1 A o N 60
F= Lo [0 ISTST o7 o] o [61
= Lo [0 A4 Y] T 61
= Lo [0 I ST 1 62
ASCI I _Char 62
(o [0 XY 63
[0 0T 0 1Y 63
(oI = Vo A T 11517 A= V01 o TR 63
S22 o 16 o o N 64
(ST A U (o= 64
L O e 64
I = Lo 65
N T 0 T 65
S 101 T T 66
Eal 17/ 67
F T gt 68
(010 1 o IR I S o 11U o o 68
L = Lo 69
T T 1 T 70
LYo [0 111V 70
LS 1 | 71
L3 A T Ve 122 o o] PR 71
LU | 13 A 71
L0 Lo 13 A =1 o 72
ETUNCAL €, 1 BAL FUNCAL € oiieniiiiiiie et et e e e e e et e e st e e st e s ab e e sbn e e sbn s e raneeanerees 73
APPENAIX AL INOLES ...ttt ettt e e et et e e e b e e e ook b e et e e aab b et e e e e b b et e e e s b e e e e e e nnr e e e e nnnnes 75
Character set NONE data aCCEPIEA “@S IS7vviiiiiiiiiieiiiiiee ettt 75
Understanding the WITH LOCK ClAUSEcoiiiiiiiieiiiiiee ettt 76
Syntax and DENEVIOUNouuiiiiiie e 76

Firebird 1.5 Language Ref. Update

How the engine dealS With WITH LOCKccoiiiiiieiiiiiie ettt 77

The optional “OF <col uM- NAMES>" SUD-CIAUSEcccuiiiiiiiiii e 78

CaveatS USING WITH LOCKuiiiiiiiiiieieeiiieie e ettt e st e ettt e e e st e e e s et e e e e annne e e s ennneeeeas 78

Examples using eXpliCit IOCKINGcoouurriiiiiiiieee et 78

A NOte ON CSTRING PAIAMELENSuvvureririririririrerirerrerrrr s s nrnsernensnensnnnnnnnees 78
AppendixX B: DOCUMENT HISIOTYviiiiiiiiiie ittt ettt e e e s e e e s anneeeeen 80
APPENAIX C: LICENSE NMOLICE ...ttt ettt et et e e ekttt e e e e e e e b e e e e s nne e e e e annneeaeeennes 82

Vi

List of Tables

4.1. Character setS NEeW iN FIrEDINToiiiiiiiie et e e enees 9
4.2. Collations NeW iN FIreDIrdooiiiiiie e 10
5.1 Maximum indiCes PEr taI€cocoi i 17
10.1. RaNQES fOr EXTRACT FESUILS ..veviiieiiiiciiiieieee ettt e st e e e e e e e st e e e e e e e s seaaarraeeeaeeesennneees 56
A.1l. How TPB settings affect explicit I0CKINGcccvviiiiiiie e 76

Vii

Chapter 1

Introduction

Tip

This documentation is outdated. Find a more recent Firebird Language Reference at Firebird 5.0 L anguage
Reference

For other documentation, visit Firebird Documentation Index

This guide documents the changes made in Firebird 1.0 and 1.5 SQL since the fork from the open-sourced
InterBase 6.0 codebase. It coversthe following areas:

* Reserved words

» Datatypes and subtypes

» DDL statements (Data Definition Language)

» DML statements (Data Manipulation Language)

» PSQL statements (Procedural SQL, used in stored procedures and triggers)
» Context variables

* Internal functions

» UDFs (User Defined Functions, also known as external functions)

To have acomplete Firebird 1.0 and 1.5 SQL reference, you need:

» ThelInterBase 6.0 beta SQL Reference (LangRef . pdf and/or SQLRef . ht nl)
» Thisdocument

Topics not discussed in this document include:

* ODSversions

» Buglistings

 Installation and configuration

» Upgrade, migration and compatibility
» Server architectures

* AP functions

» Connection protocols

* Toolsand utilities

Consult the Release Notes for information on these subjects. You can find the Release Notes and other
documentation via the Firebird Documentation Index at https.//www.firebirdsgl.org/index.php?op=doc.

Versions covered

This document covers all Firebird versions up to and including 1.5.6.

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/firebird-50-language-reference.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/firebird-50-language-reference.html
https://www.firebirdsql.org/en/documentation/
https://www.firebirdsql.org/index.php?op=doc

Introduction

Authorship

Most of thisdocument waswritten by the main author. The remainder (10-14%) waslifted from various Firebird
Release Notes editions, which in turn contain material from preceding sources like the Whatsnew documents.
Authors and editors of the included materia are:

* J Beedey

» HelenBorrie

* Arno Brinkman

* Frank Ingermann

* Alex Peshkov

* Nickolay Samofatov
* Dmitry Yemanov

Chapter 2

Reserved words

Reserved words are part of the Firebird SQL language. They cannot be used asidentifiers, except when enclosed
in double quotes. However, you should avoid this unless you really have no other option.

Added in 1.0 but removed in 1.5

The following reserved words were added in Firebird 1.0 but removed again in 1.5:

BREAK
DESCRIPTOR
FIRST

SKIP
SUBSTRING

The following non-reserved words were earmarked in Firebird 1.0 as “to be avoided because of future
reservation”, but no longer soin 1.5:

COALESCE
IF
NULLIF

(of these three, COALESCE and NULLIF are non-reserved keywordsin 1.5)

Added in 1.0 and 1.5

The following reserved words were added in Firebird 1.0 and are still reserved in 1.5:

CURRENT_ROLE
CURRENT_USER
RECREATE

The following reserved words were added in Firebird 1.5:

BIGINT

CASE
CURRENT_CONNECTION
CURRENT_TRANSACTION
RELEASE

ROW_COUNT

SAVEPOINT

The following words are not reserved, but recognized as keywords by Firebird 1.5 if used in the proper context:

Reserved words

COALESCE
DELETING
INSERTING
LAST
LEAVE
LOCK
NULLIF
NULLS
STATEMENT
UPDATING
USING

To be added in future versions

The following words are not reserved in Firebird 1.0 or 1.5, but should be avoided as identifiers because they
will likely be reserved in future versions:

ABS

BOOLEAN

BOTH
CHAR_LENGTH
CHARACTER_LENGTH
FALSE
LEADING
OCTET_LENGTH
TRAILING

TRIM

TRUE
UNKNOWN

Chapter 3

Miscellaneous
language elements

-- (single-line comment)

Tip

Find amore recent version at Firebird 5.0 Language Reference: Comments

Availablein: DSQL, PSQL
Added in: 1.0
Changedin: 1.5

Description: A line starting with “- - ” (two dashes) is a comment and will be ignored. This also makes it easy
to quickly comment out aline of SQL.

In Firebird 1.5 and up, the “- - " can be placed anywhere on the line, e.g. after an SQL statement. Everything
from the double dash to the end of the line will be ignored.

Example:
-- atable to store our valued custoners in:
create table Custoners (
name var char (32),
added_by varchar (24),
custno varchar(8),
pur chases i nteger -- nunber of purchases

)

Notice that the second comment is only alowed in Firebird 1.5 and up.

| (String concatenator)

Availablein: DSQL, ESQL, PSQL

Overflow checking

Changedin: 1.0

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-structure-comments.html

Miscellaneous language elements

Description: If the sum of the declared string lengthsin a concatenation exceeded 32767 bytes, InterBase would
raise an error without trying to do the actual concatenation — even though the result might very well be within
that limit. In Firebird 1.0 and 1.5, the “early error” threshold is raised to 65536. Consequently, concatenations
of at most two (VAR)CHARS can no longer result in these premature errors. An error will only be raised if the
actual outcome exceeds 32767 bytes, or if the sum of the declared lengths exceeds 65535 bytes. The latter is
only possibleif three or more strings take part in the concatenation.

Examples:
The following statement will raise an error in InterBase, but not in Firebird:
sel ect cast('abc' as varchar (30000))

|| cast('def' as varchar(30000))
from rdb$dat abase

The following statement will raise an (unnecessary) error in both InterBase and Firebird:

sel ect cast('abc' as varchar (30000))
|| cast('def' as varchar(30000))
|| cast('ghi' as varchar(30000))

from r db$dat abase

Note

Firebird 2.0 does away with these premature errors altogether.

Shorthand casts

Tip

Find a more recent version at Firebird 5.0 Language Reference: Datetime Literals

Availablein: DSQL, ESQL, PSQL
Added in: 1B

Description: When converting a string literal to a DATE, TIME or TIMESTAMP, Firebird alows the use of a
shorthand “C-style” cast. Thisfeature already existed in InterBase 6, but was never properly documented.

Syntax:
datatype 'date/timestring
Examples:

updat e People set AgeCat = 'dd
where BirthDate < date '1-Jan-1943

insert into Appointnents
(Enpl oyee_Id, dient_Id, App_date, App_tine)
val ues

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons.html#fblangref50-commons-datetime-literal

Miscellaneous language elements

(973, 8804, date 'today' + 2, time '16:00')

new. |l astmod = tinmestanp ' now ;

CASE construct

Tip

Find amore recent version at Firebird 5.0 Language Reference: CASE

Availablein: DSQL, ESQL, PSQL
Addedin: 1.5

Description: A CASE construct returns exactly one value from anumber of possibilities. There aretwo syntactic
variants:

» Thesimple CASE, comparable to aPascal case oraCswi t ch.
e Thesearched CASE, whichworkslikeaseriesof “if ... else if ... else if” clauses.

Simple CASE
Syntax:

CASE <expressi on>
VWHEN <expl> THEN resultl
WHEN <exp2> THEN result2

[ELSE defaul tresult]
END

When thisvariant isused, <expr essi on> iscompared to <expl>, <exp2> efc., until amatch isfound, upon
which the corresponding result is returned. If there is no match and thereis an ELSE clause, def aul t r esul t
isreturned. If there is no match and no ELSE clause, NULL is returned.

The match is determined with the “=" operator, so if <expr essi on> is NULL, it won't match any of the
<expN>s, not even those that are NULL.

The results don't have to be literal values: they may also be field or variable names, compound expressions,
or NULL literals.

Example:

sel ect nane,
age,
case upper (sex)
when 'M then ' Ml e’
when 'F' then ' Fenal €'
el se ' Unknown'
end,
religion
from peopl e

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-commons.html#fblangref50-commons-conditional-case

Miscellaneous language elements

Searched CASE
Syntax:

CASE
WHEN <bool expl> THEN resultl
WHEN <bool _exp2> THEN result2

[ELSE defaul tresult]
END

Here, the <bool _expN>s are tests that give a ternary boolean result: t rue, fal se, or NULL. The first
expression evaluating to TRUE determines the result. If no expression is TRUE and there is an ELSE clause,
def aul t resul t isreturned. If no expression is TRUE and there isno ELSE clause, NULL is returned.

As with the simple CASE, the results don't have to be literal values: they may also be field or variable names,
compound expressions, or NULL literals.

Example:

CanVote = case
when Age >= 18 then ' Yes'
when Age < 18 then ' No'
el se ' Unsure'
end;

Chapter 4

Data types and subtypes

BIGINT data type

Tip

Find amore recent version at Firebird 5.0 Language Reference: BIGINT

Added in:

15

Description: BIGINT is the SQL99-compliant 64-hit signed integer type. It isavailablein Dialect 3 only.

BIGINT numbers range from -2%% .. 25%-1, or -9,223,372,036,854,775,808 .. 9,223,372,036,854,775,807.

Example:

create tabl e Wol eLott aRecords (

id bigint not null

primary key,

description varchar (32)

)

Addedin: 1.0, 1.5

New character sets

The following table lists the character sets added in Firebird.

Table4.1. Character setsnew in Firebird

Name Bytes/char. L anguages Added in
DOS737 1 Greek 15
DOS775 1 Baltic 15
DOS858 1 = DOS850 plus€ sign 15
DOS862 1 Hebrew 15
DOS864 1 Arabic 15
DOS866 1 Russian 15
DOS869 1 Modern Greek 15

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-datatypes.html#fblangref50-datatypes-bigint

Data types and subtypes

Name Bytes/char. L anguages Added in
1SO8859_2 1 Latin-2, Central European 1.0
1SO8859 3 1 Latin-3, Southern European 15
1SO8859 4 1 Latin-4, Northern European 15
1SO8859 5 1 Cyrillic 15
1SO8859_6 1 Arabic 15
1SO8859_7 1 Greek 15
1SO8859_8 1 Hebrew 15
1SO8859_9 1 Latin-5, Turkish 15
1SO8859 13 1 Latin-7, Baltic Rim 15
WIN1255 1 Hebrew 15
WIN1256 1 Arabic 15
WIN1257 1 Baltic 15

Character set NONE handling changed

Changedin: 1.5.1

Description: Firebird 1.5.1 has improved the way character set NONE data are moved to and from fields or
variables with another character set, resulting in fewer trandliteration errors. For more details, see the Note at

the end of the book.

Addedin: 1.0, 1.5,1.5.1

New collations

The following table lists the collations added in Firebird.

Table4.2. Collationsnew in Firebird

Character set Coallation Language Added in
1SO8859_2 cscz Czech 1.0
ISO_HUN Hungarian 15
1SO8859 13 LT LT Lithuanian 151
WIN1250 PXW_HUN Hungarian 1.0

10

Data types and subtypes

Character set

Collation

Language

Added in

WIN1251

WIN1251_UA

Ukrainian and Russian

15

11

Chapter 5

DDL statements

Tip

Find amore recent version at Firebird 5.0 Language Reference: Data Definition (DDL) Statements

ALTER DOMAIN

Tip

Find amore recent version at Firebird 5.0 Language Reference: DOMAIN

Availablein: DSQL, ESQL

Rename domain
Added in: IB

Description: Renaming of adomain is possible with the TO clause. This feature was introduced in InterBase 6,
but left out of the Language Reference.

Example:
alter domain posint to plusint

e The TO clause can be combined with other clauses and need not come first in that case.

SET DEFAULT to any context variable
Changedin: IB

Description: Any context variable that is assignment-compatible to the domain's datatype can be used as a
default. Thiswas already the case in InterBase 6, but the Language Reference only mentioned USER.

Example:

al ter donmain DDate
set default current_date

12

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-domn.html

DDL statements

ALTER TABLE

Tip

Find amore recent version at Firebird 5.0 Language Reference: TABLE

Availablein: DSQL, ESQL

ADD column: Context variables as defaults
Changedin: IB

Description: Any context variable that is assignment-compatibl e to the new column's datatype can be used as a
default. Thiswas aready the case in InterBase 6, but the Language Reference only mentioned USER.

Example:

alter table MyData
add MyDay date default current_date

ALTER COLUMN: POSITION now 1-based
Changedin: 1.0
Description: When changing a column's position, the engine now interprets the new position as 1-based. This
isin accordance with the SQL standard and the InterBase documentation, but in practice InterBase interpreted
the position as 0-based.
Syntax:
ALTER TABLE t abl enanme ALTER [COLUMN] col name POSI TI ON <newpos>
<newpos> ::= an integer between 1 and the nunber of colums
Example:

alter table Stock alter Quantity position 3

Note

Don't confuse this with the POSITION in CREATE/ALTER TRIGGER. Trigger positions are and will remain 0-
based.

FOREIGN KEY without target column references PK

Changed in: 1B

13

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-table.html

DDL statements

Description: If you create a foreign key without specifying a target column, it will reference the primary key
of the target table. Thiswas aready the case in InterBase 6, but the IB Language Reference wrongly states that
in such cases, the engine scans the target table for a column with the same name as the referencing column.

Example:
create table eik (

a int not null primry key,
b int not null unique

)1
create table beuk (
b int
);
alter table beuk

add constraint fk_beuk

foreign key (b) references eik;

-- beuk.b now references eik.a, not eik.b !

UNIQUE constraints now allow NULLS

Changedin: 1.5

Description: In compliance with the SQL-99 standard, NULLs — even multiple — are now allowed in columns
with a UNIQUE constraint. For a full discussion, see CREATE TABLE :: UNIQUE constraints now allow NULLS.

USING INDEX subclause

Added in: 1.5

Description: A USING INDEX subclause can be placed at the end of aprimary, unique or foreign key definition.
Its purposeisto

» provide auser-defined name for the automatically created index that enforces the constraint, and
» optionally define the index to be ascending or descending (the default being ascending).

Syntax:

[ADD] [CONSTRAI NT constrai nt - nane]
<constraint-type> <constraint-definition>
[USI NG [ASC[ENDI NG | DESC] ENDI NG] | NDEX i ndex_nane]

For afull discussion and examples, see CREATE TABLE :: USING INDEX subclause.

ALTER TRIGGER

Tip

Find amore recent version at Firebird 5.0 Language Reference: TRIGGER

14

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-trigger.html

DDL statements

Availablein: DSQL, ESQL

Multi-action triggers

Added in: 1.5

Description: The ALTER TRIGGER syntax has been extended to support multi-action triggers. For a full
discussion of this feature, see CREATE TRIGGER :: Multi-action triggers.

Syntax:

ALTER TRI GCER tri gger-nane
[ACTI VE | | NACTI VE]
{BEFORE | AFTER} <actions>
[POSI TI ON nunber]
AS
<trigger_body>

<actions> ::= <single_action> [OR <single_action> [OR <single_action>]]
<single_action> ::= | NSERT | UPDATE | DELETE

ALTER TRIGGER no longer increments table change count

Changedin: 1.0

Description: Each timeyou use CREATE, ALTER or DROP TRIGGER, InterBase increments the metadata change
counter of the associated table. Once that counter reaches 255, no more metadata changes are possible on the
table (you can till work with the datathough). A backup-restore cycleis needed to reset the counter and perform
metadata operations again.

While this obligatory cleanup after many metadata changesisin itself a useful feature, it also means that users
who regularly use ALTER TRIGGER to deactivatetriggersduring e.g. bulk import operations are forced to backup
and restore much more often then needed.

Since changes to triggers don't imply structural changes to the table itself, Firebird no longer increments the
table change counter when CREATE, ALTER or DROP TRIGGER is used. One thing has remained though: once
the counter is at 255, you can no longer create, ater or drop triggers for that table.

PLAN allowed in trigger code

Changedin: 1.5

Description: Before Firebird 1.5, atrigger containing aPLAN statement would be rejected by the compiler. Now
avalid plan can be included and will be used.

CREATE DATABASE

Tip

Find amore recent version at Firebird 5.0 Language Reference: DATABASE

15

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl.html#fblangref50-ddl-database

DDL statements

Availablein: DSQL, ESQL

16 Kb page size supported
Changedin: 1.0

Description: The maximum database page size has been raised from 8192 to 16384 bytes.

Syntax:
CREATE { DATABASE | SCHEMA}

t i:’AGE_SI ZE [=] <size>]

<size> ::= 1024 | 2048 | 4096 | 8192 | 16384

CREATE DOMAIN

Tip

Find amore recent version at Firebird 5.0 Language Reference: DOMAIN

Availablein: DSQL, ESQL

Context variables as defaults
Changedin: IB

Description: Any context variable that is assignment-compatible to the new domain's datatype can be used as a
default. This was already the case in InterBase 6, but the Language Reference only mentioned USER.

Example:
create domai n DDate as
dat e

default current _date
not null

CREATE GENERATOR

Tip

Find amore recent version at Firebird 5.0 L anguage Reference: SEQUENCE (GENERATOR)

Availablein: DSQL, ESQL

16

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-domn.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-sequence.html

DDL statements

Maximum number of generators significantly raised
Changedin: 1.0

Description: InterBase reserved only one database page for generators, limiting the total number to 123 (on 1K
pages) — 1019 (on 8K pages). Firebird has done away with that limit; you can now create more than 32,000
generators per database.

CREATE INDEX

Tip

Find amore recent version at Firebird 5.0 Language Reference: INDEX

Availablein: DSQL, ESQL

UNIQUE indices now allow NULLS
Changed in: 1.5

Description: In compliance with the SQL-99 standard, NULLS — even multiple — are now allowed in columns
that have a UNIQUE index defined on them. For a full discussion, see CREATE TABLE :: UNIQUE constraints
now allow NULLs. As far as NULLs are concerned, the rules for unique indices are exactly the same as those
for unique keys.

Maximum number of indices per table increased
Changedin: 1.0.3and 1.5

Description: The maximum number of 64 indices per table has been removed in Firebird 1.0.3, and reintroduced
at the higher level of 256 in Firebird 1.5.

Note

Probably due to an off-by-one error in the code, the effective ceiling is 65 indices in Firebird 1.0 and 1.0.2,
and 257 indicesin Firebird 1.5.

The number of indices attainable in practice is further limited by the database page size and the number of
columns per index, as shown in the table below.

Table5.1. Maximum indices per table

Page Firebird version(s)
size
1.0,1.0.2 1.0.3 1.5.x
1 col 2 cols 3cols 1 col 2 cols 3cols 1 col 2 cols 3cols
1024 62 50 41 62 50 41 62 50 41

17

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-index.html

DDL statements

Page Firebird version(s)
size
1.0, 1.0.2 1.0.3 1.5.x
1 col 2 cols 3cols 1 col 2 cols 3cols 1 col 2 cols 3cols

2048 65 65 65 126 101 84 126 101 84
4096 65 65 65 254 203 169 254 203 169
8192 65 65 65 510 408 340 257 257 257
16384 65 65 65 1022 818 681 257 257 257

Please be aware that under normal circumstances, even 64 indices is way too many and will drastically reduce
mutation speeds. The maximum was raised to accommodate data-warehousing applications and the like, that do
lots of bulk operations during which indices are temporarily switched off.

CREATE TABLE

Tip

Find amore recent version at Firebird 5.0 Language Reference: TABLE

Availablein: DSQL, ESQL

Context variables as column defaults
Changedin: IB

Description: Any context variablethat is assignment-compatibl e to the column datatype can be used as adefault.
Thiswas aready the casein InterBase 6, but the Language Reference only mentioned USER.

Example:
create table MyData (

idint not null primary key,
record created timestanp default current _tinestanp,

FOREIGN KEY without target column references PK
Changedin: IB

Description: If you create a foreign key without specifying atarget column, it will reference the primary key
of the target table. Thiswas already the casein InterBase 6, but the IB Language Reference wrongly states that
in such cases, the engine scans the target table for a column with the same name as the referencing column.

Example:

create table eik (

18

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-table.html

DDL statements

a int not null primry key,
b int not null unique

)i

create table beuk (
b int references eik

)i

-- beuk.b references eik.a, not eik.b !

UNIQUE constraints now allow NULLS

Changedin: 1.5

Description: In compliance with the SQL-99 standard, NULLs — even multiple — are now allowed in columns
with a UNIQUE constraint. It is therefore possible to define a UNIQUE key on a column that has no NOT NULL
constraint.

For UNIQUE keys that span multiple columns, the logic is alittle complicated:
* Multiplerows having all the UK columns NULL are allowed.
» Multiple rows having a different subset of UK colums NULL are allowed.

» Multiple rows having the same subset of UK columns NULL and the rest filled with regular values and those
regular values differ in at least one column, are allowed.

* Multiple rows having the same subset of UK columns NULL and the rest filled with regular values and those
regular values are the same in every column, are forbidden.

Oneway of summarizing thisisasfollows: In principle, all NULLs are considered distinct. But if two rows have
exactly the same subset of UK columns filled with non-NULL values, the NULL columns are ignored and the
non-NULL columns are decisive, just asif they congtituted the entire unique key.

USING INDEX subclause
Added in: 1.5

Description: A USING INDEX subclause can be placed at the end of aprimary, unique or foreign key definition.
Its purposeisto

» provide a user-defined name for the automatically created index that enforces the constraint, and
» optionaly define the index to be ascending or descending (the default being ascending).

Without USING INDEX, indices enforcing named constraints are named after the constraint (thisis new behaviour
in Firebird 1.5) and indices for unnamed constraints get names like RDB$FOREIGN13 or something equally
romantic.

Note

You must always provide a new name for the index. It is not possible to use pre-existing indices to enforce
constraints.

19

DDL statements

USING INDEX can be applied at field level, at table level, and (in ALTER TABLE) with ADD CONSTRAINT. It
works with named as well as unnamed key constraints. It does not work with CHECK constraints, as these don't
have their own enforcing index.

Syntax:

[CONSTRAI NT const rai nt - nane]
<constrai nt-type> <constraint-definition>
[USI NG [ASC] ENDI NG | DESC ENDI NG] | NDEX i ndex_nane]

Examples:
Thefirst example creates a primary key constraint PK_CUST using an index named IX_CUSTNO:

create table custoners (
custno int not null constraint pk_cust primary key using index ix_custno,

This, however:

create table custoners (
custno int not null primary key using index iXx_custno,

...will giveyou aPK constraint called INTEG_7 or something similar, and an index 1X_CUSTNO.
Some more examples:

create table people (
idint not null,
ni cknane varchar(12) not null,
country char (4),

constraint pk_people primary key (id),
constrai nt uk_ni cknane uni que (ni ckname) using index ix_nick

)

alter table people
add constraint fk_people_country
foreign key (country) references countries(code)
usi ng desc i ndex ix_people_country

I mportant

If you define a descending constraint-enforcing index on a primary or unique key, be sure to make any foreign
keys referencing it descending as well.

CREATE TRIGGER

Tip

Find amore recent version at Firebird 5.0 Language Reference: TRIGGER

20

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-trigger.html

DDL statements

Availablein: DSQL, ESQL

Multi-action triggers

Added in: 1.5

Description: Triggers can now be defined to fire upon multiple operations (INSERT and/or UPDATE and/or
DELETE). Three new boolean context variables (I NSERTI NG, UPDATI NG and DELETI NG) have been added
S0 you can execute code conditionally within the trigger body depending on the type of operation.

Syntax:

CREATE TRI GCGER trigger-nane for table-nane
[ACTI VE | | NACTI VE]
{BEFORE | AFTER} <actions>
[POSI TI ON nunber]
AS
<trigger_body>

<actions> .= <single_action> [OR <single_action> [OR <single_action>]]
<single_action> ::= | NSERT | UPDATE | DELETE

Example:

create trigger biu_parts for parts
before insert or update
as
begi n
/* conditional code when inserting: */
if (inserting and new.id is null)
then new.id = gen_id(gen_partrec_id, 1);

/* conmon code: */
new. part nane_upper = upper (nhew. partnane);
end

Note

In multi-action triggers, both context variables OLD and NEW are always available. If you use them in the
wrong situation (i.e. OLD while inserting or NEW while deleting), the following happens:

* If youtry to read their field values, NULL is returned.
« |f you try to assign values to them, a runtime exception is thrown.

CREATE TRIGGER no longer increments table change count

Changedin: 1.0

Description: In contrast to InterBase, Firebird does not increment the metadata change counter of the associated
table when CREATE, ALTER or DROP TRIGGER is used. For a full discussion, see ALTER TRIGGER no longer
increments table change count.

PLAN allowed in trigger code

Changedin: 1.5

21

DDL statements

Description: Before Firebird 1.5, atrigger containing aPLAN statement would be rejected by the compiler. Now
avalid plan can be included and will be used.

CREATE VIEW

Tip

Find amore recent version at Firebird 5.0 Language Reference: VIEW

Availablein: DSQL, ESQL

PLAN subclause disallowed
Changedin: 1.5

Description: You can no longer use aPLAN subclause in aview definition.

CREATE OR ALTER PROCEDURE

Tip

Find amore recent version at Firebird 5.0 Language Reference: PROCEDURE

Availablein: DSQL, ESQL
Addedin: 1.5

Description: If the procedure does not yet exist, it is created just as if CREATE PROCEDURE were used. If it
aready exists, it is altered and recompiled. Existing permissions and dependencies are preserved.

Syntax: Exactly the same as for CREATE PROCEDURE.

CREATE OR ALTER TRIGGER

Tip

Find a more recent version at Firebird 5.0 L anguage Reference: TRIGGER

Availablein: DSQL, ESQL
Addedin: 1.5

Description: If the trigger does not yet exist, it is created just asif CREATE TRIGGER were used. If it already
exigts, it is atered and recompiled. Existing permissions and dependencies are preserved.

Syntax: Exactly the same asfor CREATE TRIGGER.

22

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-view.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-procedure.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-trigger.html

DDL statements

DECLARE EXTERNAL FUNCTION

Tip

Find amore recent version at Firebird 5.0 Language Reference: EXTERNAL FUNCTION

Availablein: DSQL, ESQL
Description: This statement makes an external function (UDF) known to the database.
Syntax:
DECLARE EXTERNAL FUNCTI ON | ocal nare
[<type_decl > [, <type_decl> ...]]
RETURNS {<return_type decl> | PARAMETER 1-based pos} [FREE I T]
ENTRY_PO NT ' function_nane' MODULE NAME 'li brary_nane'

<t ype_decl > ::= sqltype [BY DESCRI PTOR] | CSTRI NE I engt h)
<return_type decl> ::= sqltype [BY {DESCRI PTOR| VALUE}] | CSTRI N& | engt h)

You may choose | ocal nane fregly; this is the name by which the function will be known to your database.
You may also vary thel engt h argument of CSTRING parameters (more about CSTRINGS in the note near the
end of the book).

BY DESCRIPTOR parameter passing
Added in: 1.0

Description: Firebird introduces the possibility to pass parameters BY DESCRIPTOR; this mechanism facilitates
the processing of NULLsin ameaningful way. Notice that this only works if the person who wrote the function
has implemented it. Simply adding “BY DESCRIPTOR” to an existing declaration does not make it work —on
the contrary! Always use the declaration block provided by the function designer.

RETURNS PARAMETER n
Added in: IB 6

Description: Inorder toreturn aBLOB, an extrainput parameter must be declared and a“ RETURNSPARAMETER
n” subclause added — n being the position of said parameter. This subclause dates back to InterBase 6 beta, but
somehow didn't make it into the Language Reference (it is documented in the Devel oper's Guide though).

DROP GENERATOR

Tip

Find amore recent version at Firebird 5.0 Language Reference: SEQUENCE (GENERATOR)

Availablein: DSQL, ESQL

23

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-extfunc.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-sequence.html

DDL statements

Added in: 1.0

Description: Removes a generator. Its (very small) storage space will be freed for re-use after a backup-restore
cycle.

Syntax:

DROP GENERATCR gener at or - nane

DROP TRIGGER

Tip

Find amore recent version at Firebird 5.0 Language Reference: TRIGGER

Availablein: DSQL, ESQL

DROP TRIGGER no longer increments table change count
Changedin: 1.0
Description: In contrast to InterBase, Firebird does not increment the metadata change counter of the associated

table when CREATE, ALTER or DROP TRIGGER is used. For afull discussion, see ALTER TRIGGER no longer
increments table change count.

RECREATE PROCEDURE

Tip

Find amore recent version at Firebird 5.0 Language Reference: PROCEDURE

Availablein: DSQL, ESQL
Addedin: 1.0

Description: Creates or recreates a stored procedure. If a procedure with the same name already exists,
RECREATE PROCEDURE will try to drop it and create a new procedure. RECREATE PROCEDURE will fail if
the existing SPisin use.

Syntax: Exactly the same as CREATE PROCEDURE.

RECREATE TABLE

Tip

Find amore recent version at Firebird 5.0 Language Reference: TABLE

24

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-trigger.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-procedure.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-table.html

DDL statements

Availablein: DSQL, ESQL

Addedin: 1.0

Description: Creates or recreates atable. If atable with the same name already exists, RECREATE TABLE will
try to drop it (destroying all its datain the process!) and create a new table. RECREATE TABLE will fail if the

existing tableisin use.

Syntax: Exactly the same as CREATE TABLE.

RECREATE VIEW

Tip

Find amore recent version at Firebird 5.0 Language Reference: VIEW

Availablein: DSQL, ESQL
Addedin: 1.5

Description: Cresates or recreates a view. If aview with the same name aready exists, RECREATE VIEW will
try to drop it and create a new view. RECREATE VIEW will fail if the existing view isin use.

Syntax: Exactly the same as CREATE VIEW.

25

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-ddl-view.html

Chapter 6

DML statements

Tip

Find amore recent version at Firebird 5.0 Language Reference: Data Manipulation (DML) Statements

EXECUTE PROCEDURE

Tip

Find amore recent version at Firebird 5.0 Language Reference: EXECUTE PROCEDURE

Availablein: DSQL, ESQL, PSQL
Changedin: 1.5

Description: Executes a stored procedure. In Firebird 1.0.x aswell asin InterBase, any input parametersfor the
SP must be supplied asliterals, host language variables (in ESQL) or local variables (in PSQL). In Firebird 1.5
and above, input parameters may also be (compound) expressions, except in static ESQL.

Syntax:

EXECUTE PROCEDURE pr ocnane
[TRANSACTI ON transacti on]
[<in_itenr [, <in_itenmr ...]]
[RETURNI NG_VALUES <out _iten> [, <out_itenr ...]]

<in_itenpr = <paranr [<nullind>]
<out_itenk ::= <outvar> [<nullind>]
<par anp = an expression evaluating to the decl ared paraneter type
<out var > = a host language or PSQ variable to receive the return val ue
<nul I'i nd> = [INDI CATOR] : host | ang_i ntvar
Notes

e TRANSACTION clauses are not supported in PSQL.
» Expression parameters are not supported in static ESQL, and not in Firebird versions below 1.5.

e NULL indicators are only valid in ESQL code. They must be host language variables of type
integer.

e In ESQL, variable names used as parameters or outvars must be preceded by a colon (“:”). In

PSQL the colon is generally optional, but forbidden for the trigger context variables OLD and
Examples: NEW.

In PSQL (with optional colons):

26

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml-execproc.html

DML statements

execut e procedure NMakeFul | Name
: FirstName, : M ddl eNane, :LastNane
returning_val ues : Ful | Nane;

The same call in ESQL (with obligatory colons):
exec sql
execut e procedure MakeFul | Name

:FirstName, : M ddl eNane, :Last Nane
returning_val ues : Ful | Nane;

...and in Firebird's command-line utility isgl (with literal parameters):

execut e procedure NMakeFul | Name
"J', 'Edgar', 'Hoover';

Note: Inisgl, don't use RETURNING_VALUES. Any output values are shown automatically.
Finally, a PSQL example with expression parameters, only possiblein Firebird 1.5 and up:
execut e procedure MakeFul | Nane

"M./Ms. ' || FirstName, M ddl eNane, upper (Last Name)
returni ng_val ues Ful | Nane;

SELECT

Tip

Find amore recent version at Firebird 5.0 Language Reference: SELECT

Availablein: DSQL, ESQL, PSQL

Aggregate functions: Extended functionality
Changedin: 1.5

Description: Several types of mixing and nesting aggragate functions are supported since Firebird 1.5. They
will be discussed in the following subsections. To get the complete picture, also look at the SELECT :: GROUP
BY sections.

Mixing aggregate functions from different contexts

Firebird 1.5 and up allow the use of aggregate functions from different contexts inside a single expression.

Example:
sel ect
r.rdb$rel ati on_nanme as "Tabl e nane",
(select nmax(i.rdb$statistics) || ' (" || count(*) || ")

fromrdb$relation_fields rf

27

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml.html#fblangref50-dml-select

DML statements

where rf.rdb$rel ati on_name = r.rdb$rel ati on_nane

) as "Max. IndexSel (# fields)"
from

rdb$rel ations r

join rdb$indices i on (i.rdb$relation_name = r.rdb$rel ati on_nane)
group by r.rdb$rel ation_nane
havi ng max(i.rdb$statistics) >0
order by 2

This admittedly rather contrived query shows, in the second column, the maximum index selectivity of any
index defined on atable, followed by the table'sfield count between parentheses. Of course you would normally
display the field count in a separate column, or in the column with the table name, but the purpose here is to
demonstrate that you can combine aggregates from different contextsin asingle expression.

Warning

Firebird 1.0 also executes this type of query, but gives the wrong results!

Aggregate functions and GROUP BY items inside subqueries

SinceFirebird 1.5t is possible to use aggregate functions and/or expressions contained in the GROUPBY clause
inside a subquery.

Examples:

This query returns each tables ID and field count. The subquery refers to flds.rdb
$rel ati on_nane, which isalso a GROUPBY item:

sel ect
flds.rdb$rel ati on_nane as "Rel ati on nane",
(select rels.rdb$relation_id
fromrdb$relations rels
where rel s.rdb$rel ati on_nanme = flds.rdb$rel ati on_nane
) as "ID',
count (*) as "Fields"
fromrdb$rel ation_fields flds
group by flds.rdb$rel ati on_nane

The next query showsthelast field from each table and and its 1-based position. It uses the aggregate
function MAX in a subquery.

sel ect
flds.rdb$rel ati on_nane as "Tabl e"
(select flds2.rdb$field name
fromrdb$relation fields flds2
wher e
flds2.rdb$rel ati on_nanme = flds.rdb$rel ati on_nane
and flds2.rdb$field position = max(flds.rdb$field position)
) as "Last field",
max(flds.rdb$field_position) + 1 as "Last fiel dpos"
fromrdb$relation fields flds
group by 1

The subquery also contains the GROUP BY item fl ds. rdb$rel ati on_nane, but that's not
immediately obvious because in this case the GROUP BY clause uses the column number.

28

DML statements

Subqueries inside aggregate functions
Using a singleton subselect inside (or as) an aggregate function argument is supported in Firebird 1.5 and up.
Example:

sel ect
r.rdb$rel ati on_name as "Tabl e",
sum((select count(*)
fromrdb$relation_fields rf
where rf.rdb$rel ati on_name = r.rdb$rel ati on_nane)
) as "Ind. x Fields"
from
rdb$rel ations r
join rdb$i ndi ces
on (i.rdb$relation_name = r.rdb$rel ati on_nane)

group by
r.rdb$rel ati on_nane

Nesting aggregate function calls

Firebird 1.5 allows the indirect nesting of aggregate functions, provided that the inner function is from a lower
SQL context. Direct nesting of aggregate function calls, asin “COUNT(MAX(price))", is till forbidden and
punishable by exception.

Example: See under Subqueries inside aggregate functions, where COUNTY() is used inside a SUM().

Aggregate statements: Stricter HAVING and ORDER BY

Firebird 1.5 and above are stricter than previous versions about what can beincluded inthe HAVING and ORDER
BY clauses. If, in the context of an aggregate statement, an operand in aHAVING or ORDER BY item contains
acolumn name, it is only accepted if one of the following is true:

» The column name appears in an aggregate function call (e.g. “HAVI NG MAX(SALARY) > 10000").

» The operand equals or is based upon a non-aggregate column that appears in the GROUP BY list (by name
or position).

“Is based upon” means that the operand need not be exactly the same as the column name. Suppose there's a
non-aggregate column “STR” in the select list. Then it's OK to use expressions like “UPPER(STR)”, “STR || 1"

or “SUBSTRING(STR FROM 4 FOR 2)” in the HAVING clause — even if these expressions don't appear as such
in the SELECT or GROUPBY list.

Ambiguous JOIN statements rejected
Changedin: 1.0

Description: InterBase 6 accepts and executes statements like the one below, which refers to an unqualified
column name even though that name exists in both tables participating in the JOIN:

sel ect buses. nanme, garages. hane

29

DML statements

from buses join garages on buses.garage id = garage.id
where nane = ' Phideaux II1'

The results of such a query are unpredictable. Firebird Dialect 3 returns an error if there are ambiguous field
names in JOIN statements. Dialect 1 gives awarning but will execute the query anyway.

[AS] before relation alias

Added in: IB

Description: The keyword AS can optionally be placed before arelation alias, just asit can be placed before a
column alias. Thisfeature dates back to InterBase times, but wasn't documented in the IB Language Reference.

Syntax:

SELECT ... FROM <relation> [AS] alias
<relation> ::= A table, view, or selectable SP
Examples:

sel ect order_no, total, fullname
fromorders as o join custoners as ¢ on o.cust_id = c.cust_id

sel ect order_no, total, fullnane
fromorders o join custoners ¢ on o.cust_id = c.cust_id

The two queries are fully equivalent.

FIRST and SKIP

Added in: 1.0
Changedin: 1.5

Description: FIRST limits the output of a query to the first so-many rows. SKIP will suppress the given number
of rows before starting to return output.

Syntax:
SELECT [FIRST (<int-expr>)] [SKIP (<int-expr>)] <colums> FROM ...

<i nt - expr>
<col ums>

Any expression evaluating to an integer.
The usual output col um specifications.

Note

If <i nt - expr >isaninteger literal or aquery parameter, the“() " may be omitted. Subselectson
the other hand require an extra pair of parentheses.

FIRST and SKIP are both optional. When used together asin “FIRST mSKIP n”, the n topmost rows of the output
set are discarded and the first mrows of the remainder are returned.

30

DML statements

SKIP O is alowed, but of course rather pointless. FIRST O is allowed in version 1.5 and up, where it returns an
empty set. In 1.0.x, FIRST 0 causes an error. Negative SKIP and/or FIRST values always result in an error.

If a SKIP lands past the end of the dataset, an empty set isreturned. If the number of rows in the dataset (or the
remainder after a SKIP) isless than the value given after FIRST, that smaller number of rowsis returned. These
are valid results, not error situations.

Examples:
The following query will return the first 10 names from the People table:

select first 10 id, nanme from People
order by nane asc

The following query will return everything but the first 10 names:

sel ect skip 10 id, name from Peopl e
order by nane asc

And this one returns the last 10 rows. Notice the doubl e parentheses:
sel ect skip ((select count(*) - 10 from People))

id, name from Peopl e
order by nane asc

This query returns rows 81-100 of the People table:

select first 20 skip 80 id, nane from Peopl e
order by nane asc

Two Gotchaswith FIRST in subselects
e This:
del ete from MyTabl e where IDin (select first 10 ID from MyTabl e)

will deleteall of therowsinthetable. Ouch! The sub-select isevaluating each 10 candidate rowsfor deletion,
deleting them, slipping forward 10 more... ad infinitum, until there are no rows left. Beware!

* Querieslike:
...where F1 in (select first 5 F2 from Tabl e2 order by 1 desc)

won't work as expected, because the optimization performed by the engine transforms the IN predicate to
the correlated EXISTS predicate shown below. It's obviousthat in this case FIRST N doesn't make any sense:

...where exists
(select first 5 F2 from Tabl e2
where Tabl e2. F2 = Tabl el. F1
order by 1 desc)

GROUP BY UDF
Changedin: 1.0

Description: In Firebird, you can use the output of a user-defined function as a GROUP BY item.

31

DML statements

Syntax:

SELECT ... FROM...
GROUP BY <iten» [, <itenp ...]

col um-nane [COLLATE col |l ati on-nane] | <udf-call>
udf -nane(argl [, argN ...])

<itenp
<udf-call >

UDF calls may be nested, but — as follows from the syntax — you cannot mix UDF callsand COLLATE inasingle
GROUPBY item.

Example:

sel ect strlen(lastnanme), count(*)
from peopl e
group by strlen(l astnane)
order by 2 desc

Warning

DSQL currently lacks a mechanism to check if GROUP BY UDF subclauses are formulated correctly. Always
make sure that your GROUP BY item list correctly represents the scalar (i.e. non-aggregate) expression(s) in
your SELECT list.

GROUP BY internal function, column position, and CASE

Changedin: 1.5
Description: Firebird 1.5 adds the following to the list of valid GROUP BY items:

» 1-based column position numbers (like in ORDER BY);
* Theinternal functions COALESCE, EXTRACT, NULLIF, SUBSTRING and UPPER;
» CASE constructs.

Syntax:

SELECT ... FROM...
GROUP BY <itenr [, <itemr ...]

<itenp ::= colum-nane [COLLATE col |l ati on-nane]
| columm-position
| <function-call>
| CASE-construct

<function-call> ::= COALESCE(argl, arg2 [, argN ...])
| EXTRACT(part FROM date/tine)
| NULLI F(argl, arg2)
| SUBSTRI NG str FROM pos [FOR count])
| UPPER(str)
| udf-name(argl [, argN ...])

Function calls may be nested. Asin previous versions, COLLATE can only be used with column names.

32

DML statements

If you group by a column position, the expression at that position is copied internally from the select list. If it
concerns a subquery, that subquery will be executed at least twice.

I mportant

¢ A GROUPBY item cannot be a reference to an aggregate function (including those that are buried inside an
expression) from the same context.

» Asbefore, every non-aggregate column must appear in the GROUPBY list, whether explicitly or by position.

* An exception to the previous rule are non-aggregate subquery columns; you may leave these out of the
GROUPBY clause. Be very careful though: if the subquery uses columnsthat are not in the GROUPBY list,
it may return different results within the same group and you're in trouble. To avoid this, add those columns
— or the entire subquery column —to the GROUPBY.

Examples:

sel ect
case when price is null then O else price end,
sum(nunber _sol d)

fromsal es_per_article

group by
case when price is null then O else price end

Of course this exampleis only to demonstrate the use of a CASE construct in the GROUP BY clause.
In this particular case you should first of all use COALESCE:

sel ect
coal esce (price, 0),
sun{ nunber _sol d)
fromsal es_per_article

group by

coal esce (price, 0)
and then you could save yourself some typing time by using the column number:
sel ect

coal esce (price, 0),

sun{ nunmber _sol d)

fromsal es_per_article
group by 1

HAVING: Stricter rules

Changedin: 1.5

Description: See Aggregate statements: Stricter HAVING and ORDER BY.

ORDER BY: Expressions and NULLs placement

Changedin: 1.5

Description: In addition to column names and positions, the ORDER BY clause can now also contain expressions
to sort the output by. Furthermore, per-column NULLSFIRST and NULLSLAST subclauses can be used to specify
where NULL s appear in the sorted column.

33

DML statements

Syntax:
SELECT ... FROM...
CRDER BY <ordering-iten» [, <ordering-itenm> ...]
<ordering-item> ::= {colum-name | columm-position | expression}
[COLLATE col | ati on- nane]

[ASCI ENDI NG| | DESC ENDI NG]
[NULLS { FI RST| LAST}]

Expressions consisting of a single non-negative number will be interpreted as 1-based column numbers and will
cause an exception if they're not in the range from 1 to the number of columns.

By default, NULLswill be placed at the end of the sort, regardless whether the order is ascending or descending.
This is the same behaviour as in previous Firebird versions. No index will be used on columns for which the
non-default NULLS FIRST placement is chosen.

The number of function or procedure invocations resulting from a sort based on a UDF or stored procedure is
unpredictable, regardless whether the ordering is specified by the expression itself or by the column position
number.

Examples:

select * from nsg
order by process_tinme desc nulls first

select first 10 * from docunent
order by strlen(description) desc

sel ect doc_nunber, doc_date from payorder

uni on all

sel ect doc_nunber, doc_date from budgorder
order by 2 desc nulls last, 1 asc nulls first

ORDER BY: Stricter rules with aggregate statements

Changedin: 1.5

Description: See Aggregate statements. Stricter HAVING and ORDER BY.

WITH LOCK
Availablein: DSQL, PSQL
Added in: 1.5

Description: WITH LOCK providesalimited explicit pessimistic locking capability for cautious usein conditions
where the affected row set is:

a extremely small (ideally, asingleton), and
b. precisely controlled by the application code.

DML statements

Thisisfor expertsonly!

The need for a pessimistic lock in Firebird is very rare indeed and should be well understood before use of
this extension is considered.

It isessential to understand the effects of transaction isolation and other transaction attributes before attempting
to implement explicit locking in your application.

Syntax:
SELECT ... FROM single_table
[WHERE . . .]
[FOR UPDATE [OF ...]]
[WTH LOCK]

If the WITH LOCK clause succeeds, it will secure alock on the selected rows and prevent any other transaction
from obtaining write access to any of those rows, or their dependants, until your transaction ends.

If the FOR UPDATE clause is included, the lock will be applied to each row, one by one, asit is fetched into
the server-side row cache. It becomes possible, then, that a lock which appeared to succeed when requested
will nevertheless fail subsequently, when an attempt is made to fetch a row which becomes locked by another
transaction.

WITH LOCK can only be used with atop-levd, single-table SELECT statement. It is not available:

* inasubquery specification;

» forjoined sets;

» with the DISTINCT operator, a GROUP BY clause or any other aggregating operation;
« withaview;

» with the output of a selectable stored procedure;

» with an externa table.

A lengthier, more in-depth discussion of “SELECT ... WITH LOCK” isincluded in the Notes. It is a must-read
for everybody who considers using this feature.

35

Chapter 7

Transaction
control statements

Tip

Find amore recent version at Firebird 5.0 Language Reference: Transaction Control

RELEASE SAVEPOINT

Tip

Find a more recent version at Firebird 5.0 Language Reference: RELEASE SAVEPOINT

Availablein: DSQL
Added in: 1.5
Description: Deletes a named savepoint, freeing up all the resourcesit binds.
Syntax:
RELEASE SAVEPO NT name [ONLY]
Unless ONLY is added, all the savepoints created after the named savepoint are released as well.

For afull discussion of savepoints, see SAVEPOINT.

ROLLBACK TO SAVEPOINT

Tip

Find amore recent version at Firebird 5.0 Language Reference: ROLLBACK

Availablein: DSQL
Added in: 1.5

Description: Undoes everything that happened in a transaction since the creation of the savepoint.

36

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-transacs.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-transacs.html#fblangref50-transacs-releasesp
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-transacs.html#fblangref50-transacs-rollback

Transaction control statements

Syntax:
ROLLBACK [WORK] TO [SAVEPQOI NT] nane
ROLLBACK TO SAVEPOINT performs the following operations:
» All the mutations performed within the transaction since the savepoint was created are undone.

» All savepoints created after the one named are destroyed. All earlier savepoints are preserved, as is the
savepoint itself. This means that you can rollback to the same savepoint several times.

» All implicit and explicit record locks acquired since the savepoint are released. Other transactions that have
requested accessto rowslocked after the savepoint must continue to wait until the transaction iscommitted or
rolled back. Other transactions that have not already requested the rows can request and access the unlocked
rows immediately.

For afull discussion of savepoints, see SAVEPOINT.

SAVEPOINT

Tip

Find a more recent version at Firebird 5.0 Language Reference: SAVEPOINT

Availablein: DSQL
Addedin: 1.5

Description: Creates an SQL-99 compliant savepoint, to which you can later rollback your work without rolling
back the entire transaction. Savepoint mechanisms are also known as “nested transactions”.

Syntax:
SAVEPO NT <nane>

<nane> ::= a user-chosen identifier, unique within the transaction

If the supplied name exists already within the same transaction, the existing savepoint is deleted and a new one
is created with the same name.

If you later want to rollback your work to the point where the savepoint was created, use:
ROLLBACK [WORK] TO [SAVEPQOI NT] nane

ROLLBACK TO SAVEPOINT performs the following operations:

» All the mutations performed within the transaction since the savepoint was created are undone.

» All savepoints created after the one named are destroyed. All earlier savepoints are preserved, as is the
savepoint itself. This means that you can rollback to the same savepoint several times.

» All implicit and explicit record locks acquired since the savepoint are released. Other transactions that have
reguested accessto rowslocked after the savepoint must continue to wait until the transaction is committed or

37

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-transacs.html#fblangref50-transacs-savepoint

Transaction control statements

rolled back. Other transactions that have not already requested the rows can request and access the unlocked
rows immediately.

The internal savepoint bookkeeping can consume huge amounts of memory, especialy if you update the same
records multiple timesin one transaction. If you don't need a savepoint anymore but you're not yet ready to end
the transaction, you can del ete the savepoint and free the resources it uses with:

RELEASE SAVEPO NT name [ONLY]

With ONLY, the named savepoint is the only one that gets released. Without it, all savepoints created after it
arereleased as well.

Example DSQL session using a savepoint:

create table test (id integer);
conmi t;

insert into test values (1);
conmi t;

insert into test values (2);
savepoint y;

del ete fromtest;

select * fromtest; -- returns no rows
rol I back to v;

select * fromtest; -- returns two rows
rol | back;

select * fromtest; -- returns one row

Internal savepoints

By default, the engine uses an automatic transaction-level system savepoint to perform transaction rollback.
When you issue a ROLLBACK statement, all changes performed in this transaction are backed out via a
transaction-level savepoint and the transaction is then committed. This logic reduces the amount of garbage
collection caused by rolled back transactions.

When the volume of changes performed under a transaction-level savepoint is getting large (104—106 records
affected), the engine releases the transaction-level savepoint and uses the TIP mechanism to roll back the
transaction if needed.

Tip

If you expect the volume of changes in your transaction to be large, you can use the TPB flag
i sc_tpb_no_aut o_undo to avoid the transaction-level savepoint being created.

Savepoints and PSQL

Transaction control statements are not allowed in PSQL, as that would break the atomicity of the statement that
calls the procedure. But Firebird does support the raising and handling of exceptions in PSQL, so that actions
performed in stored procedures and triggers can be selectively undone without the entire procedure failing.
Internally, automatic savepoints are used to:

» undo al actionsin a BEGIN...END block where an uncaught exception occurs,

38

Transaction control statements

» undo al actions performed by the SP/trigger (or, in the case of a selectable SP, al actions performed since
the last SUSPEND) when it terminates prematurely due to an uncaught error or exception.

Each PSQL exception handling block is aso bounded by automatic system savepaints.

39

Chapter 8

PSQL statements

Tip

Find amore recent version at Firebird 5.0 L anguage Reference: Procedural SQL (PSQL) Statements

PSQL — Procedural SQL —isthe Firebird stored procedure and trigger language.

BEGIN ... END blocks may be empty

Tip

Find a more recent version at Firebird 5.0 Language Reference: BEGIN ... END

Availablein: PSQL
Changedin: 1.5

Description: BEGIN ... END blocks may be empty in Firebird 1.5 and up, allowing you to write stub code without
having to resort to dummy statements.

Example:

create trigger bi_atable for atable
active before insert position O

as

begi n

end

BREAK

Tip

Find amore recent version at Firebird 5.0 Language Reference: BREAK

Availablein: PSQL
Addedin: 1.0

Better alternative: LEAVE

Description: BREAK immediately terminates a WHILE or FOR loop and continues with the first statement after
the loop.

40

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-beginend
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-break

PSQL statements

Example:

create procedure sel phrase(numi nt)
returns (phrase varchar(40))

as
begi n
for select Phr from Phrases into phrase do
begin
if (num< 1) then break;
suspend;
num = num - 1;
end
phrase = '*** Ready! ***'
suspend;
end

This selectable SP returns at most numrows from the table Phrases. The variable numis decremented
in each iteration; once it is smaller than 1, the loop is terminated with BREAK. The program then
continues a theline“phrase = ' *** Ready! ***';".

Important

Since Firebird 1.5, use of the SQL-99 compliant synonym LEAVE is preferred.

DECLARE [VARIABLE] with initialization

Tip

Find amore recent version at Firebird 5.0 Language Reference: DECLARE VARIABLE

Availablein: PSQL
Changedin: 1.5

Description: InFirebird 1.5 and above, aPSQL local variable can beinitialized upon declaration. TheVARIABLE
keyword has become optional.

Syntax:
DECLARE [VARI ABLE] varnane datatype [{= | DEFAULT} val ue];
Example:

create procedure proccie (a int)
returns (b int)
as
declare p int;
declare q int = 8;
declare r int default 9;
declare variable s int;
declare variable t int = 10;
declare variable u int default 11;

41

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-declare-variable

PSQL statements

begi n
<intelligent code here>
end

EXCEPTION

Tip

Find amore recent version at Firebird 5.0 Language Reference: EXCEPTION

Availablein: PSQL
Changedin: 1.5
Description: The EXCEPTION syntax has been extended so that the user can

a. Rethrow acaught exception or error.
b. Provide a custom message when throwing a user-defined exception.

Syntax:
EXCEPTI ON [<excepti on- nane> [cust om nessage]]

<exception-name> ::= A previously defined exception nane

Rethrowing a caught exception

Within the exception handling block only, you can rethrow the caught exception or error by giving the
EXCEPTION command without any arguments. Outside such blocks, this“bare” command has no effect.

Example:
when any do
begi n
insert into error_log (...) values (sqglcode, ...);
excepti on;
end

This example first logs some information about the exception or error, and then rethrows it.

Providing a custom error message

Firebird 1.5 and up alow you to override an exception's default error message by supplying an alternative one
when throwing the exception.

Examples:
exception ex_data_error 'You just |ost sonme val uable data';

exception ex_bad_type 'Wong type for record with id ' || newid;

42

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-handleexceptions.html#fblangref50-psql-exception

PSQL statements

EXECUTE PROCEDURE

Tip

Find amore recent version at Firebird 5.0 Language Reference: EXECUTE PROCEDURE

Availablein: DSQL, PSQL
Changedin: 1.5
Description: In Firebird 1.5 and above, (compound) expressions are allowed as input parameters for stored

procedures called with EXECUTE PROCEDURE. See DML statements :: EXECUTE PROCEDURE for full info
and examples.

EXECUTE STATEMENT

Tip

Find amore recent version at Firebird 5.0 Language Reference: EXECUTE STATEMENT

Availablein: PSQL
Added in: 1.5
Description: EXECUTE STATEMENT takes asingle string argument and executesit asif it had been submitted as

aDSOQL statement. The exact syntax depends on the number of datarows that the supplied statement may return.

No data returned
Thisform is used with INSERT, UPDATE, DELETE and EXECUTE PROCEDURE statements that return no data.
Syntax:
EXECUTE STATEMENT <st at enent >
<statenent> ::= An SQ statenent returning no data.
Example:
create procedure Dynani cSanpl eOne (ProcNane varchar (100))
as

decl are variable stnm varchar(1024);
decl are variable paramint;

begi n
sel ect min(SoneFi el d) from SoneTabl e i nto param
stnt = 'execute procedure '

| | ProcNane
[
I

cast (param as varchar (20))

43

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-dml-execproc.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-execstmt

PSQL statements

[")
execute statenent stnt;
end

Warning

Although thisform of EXECUTE STATEMENT can al so be used with all kinds of DDL strings (except CREATE/
DROP DATABASE), it is generally very, very unwise to use this trick in order to circumvent the no-DDL rule

in PSQL.

One row of data returned
Thisform is used with singleton SELECT statements.
Syntax:
EXECUTE STATEMENT <sel ect-statenment> | NTO <var> [, <var> ...]

<sel ect - st at enent > An SQL statenment returning at nost one row of data.

<var > A PSQ. variable, optionally preceded by “:”
Example:
create procedure Dynani cSanpl eTwo (Tabl eNane varchar (100))
as
decl are variable paramint;
begi n
execut e statenent
'sel ect max(CheckField) from' || TableNane into :param
if (param > 100) then
exception Ex_Overflow 'Overflow in ' || Tabl eNaneg;
end

Any number of data rows returned

This form — analogous to “FOR SELECT ... DO” —is used with SELECT statements that may return a multi-row
dataset.

Syntax:

FOR EXECUTE STATEMENT <sel ect-statenent> | NTO <var> [, <var> ...]
DO <conpound- st at enent >

<sel ect - st at enent > = Any SELECT statenent.
<var > ;.= A PSQL variable, optionally preceded by “:”

Example:

create procedure Dynani cSanpl eThree
(TextField varchar(100),
Tabl eNane var char (100))
returns
(LongLi ne varchar (32000))
as
decl are vari abl e Chunk varchar (100);

PSQL statements

begi n
Chunk ="'
for execute statenent
"select ' || TextField || ' from' || TableNane into : Chunk
do

if (Chunk is not null) then
LongLi ne = LongLine || Chunk || ' ';
suspend;
end

Caveats with EXECUTE STATEMENT

1. Thereisno way to validate the syntax of the enclosed statement.

N

There are no dependency checks to discover whether tables or columns have been dropped.
3. Operations will be slow because the embedded statement has to be prepared every time it is executed.

4. The argument string cannot contain any parameters. All variable substitution into the static part of the
DSQL statement should be performed before EXECUTE STATEMENT is called.

5. Returnvauesarestrictly checked for datatypein order to avoid unpredictable type-casting exceptions. For
example, thestring' 1234" would convert to an integer, 1234, but' abc' would give aconversion error.

6. The submitted DSQL statement is always executed with the privileges of the current user. Privileges
granted to the trigger or SP that contains the EXECUTE STATEMENT statement are not in effect while the
DSQL statement runs.

All inal, thisfeature isintended only for very cautious use and you should always take the above factors into
account. Bottom line: use EXECUTE STATEMENT only when other methods are impossible, or perform even
worse than EXECUTE STATEMENT.

EXIT

Tip

Find amore recent version at Firebird 5.0 Language Reference: EXIT

Availablein: PSQL
Changedin: 1.5

Description: In Firebird 1.5 and up, EXIT can be used in all PSQL. In earlier versions it is only supported in
stored procedures, not in triggers.

FOR EXECUTE STATEMENT ... DO

Tip

Find amore recent version at Firebird 5.0 Language Reference: FOR EXECUTE STATEMENT

45

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-exit
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-forexec

PSQL statements

Availablein: PSQL
Added in: 1.5

Description: See EXECUTE STATEMENT :: Any number of data rows returned.

FOR SELECT ... INTO ... DO

Tip

Find amore recent version at Firebird 5.0 Language Reference: FOR SELECT

Availablein: PSQL

Description: Executes a SELECT statement and retrieves the result set. In each iteration of the loop, the field
values of the current row are copied into local variables. Adding an AS CURSOR clause enables positioned
deletes and updates. FOR SELECT statements may be nested.

Syntax:

FOR <sel ect-stnt>
I NTO <var> [, <var> ...]
[AS CURSCOR nane]

DO
<psql -stmt >

<sel ect-stnt> A val id SELECT st atenent.

<var > A PSQL variable nane, optionally preceded by “:”

<psql - st nt > A single statement or a block of PSQ. code.

» The SELECT statement may contain named SQL parameters, likein“sel ect name || :sfx
from nanes where nunmber = : nuni. Each parameter must be a PSQL variable that has

been declared previoudly (this includes any in/out params of the PSQL module).

e Caution! If the value of a PSQL variable that is used in the SELECT statement changes during
execution of the loop, the statement may (but will not always) be re-evaluated for the remaining
rows. In general, this situation should be avoided. If you really need this behaviour, test your code
thoroughly and make sure you know how variable changes affect the outcome. Also be advised
that the behaviour may depend on the query plan, in particular the use of indices. Asitiscurrently
not strictly defined, it may change in some future version of Firebird.

Examples:

create procedure shownums
returns (aa int, bb int, smint, df int)
as
begi n
for select distinct a, b fromnunbers order by a, b
into :aa, :bb

do

begi n
sm = aa + bb;
df = aa - bb;

46

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-forselect

PSQL statements

suspend;
end
end

create procedure relfields
returns (relation char(32), pos int, field char(32))
as
begi n
for select rdb$rel ation_nane fromrdb$rel ations
into :relation
do
begi n
for select rdb$field _position + 1, rdb$field_nane
fromrdb$relation fields
where rdb$rel ati on_nane = :relation
order by rdb$fiel d_position
into :pos, :field
do
begi n
if (pos = 2) then relation ="' "'; -- for nicer output
suspend;
end
end
end

AS CURSOR clause
Availablein: PSQL
Added in: IB

Description: The optional AS CURSOR clause creates a named cursor that can be referenced (after WHERE
CURRENT OF) withinthe FOR SELECT loop in order to update or delete the current row. Thisfeature was already
added in InterBase, but not mentioned in the Language Reference.

Example:

create procedure deltown (towntodel ete varchar(24))
returns (town varchar(24), pop int)

as
begi n
for select town, pop fromtowns into :town, :pop as cursor tcur do
begi n
if (town = towntodel ete)
then delete fromtowns where current of tcur
el se suspend;
end
end
Notes:

* A “FOR UPDATE" clauseis allowed in the SELECT statement., but not required for a positioned update or
delete to succeed.

* AS CURSOR is not supported in FOR EXECUTE STATEMENT loops, even if the statement to execute is a
suitable SELECT query.

47

PSQL statements

LEAVE

Tip

Find amore recent version at Firebird 5.0 Language Reference: LEAVE

Availablein: PSQL
Addedin: 1.5

Description: LEAVE immediately terminates a WHILE or FOR loop and continues with the first statement after
the loop.

Example:
while (b < 10) do
begi n
insert into Nunmbers(B) values (:b);
b=Db+ 1;
when any do
begi n
execute procedure log_error (current_tinestanp, 'Error in B loop');
| eave;
end
end
c = 0;
while (c < 10) do
begi n
end

If an error occursduring theinsert, theevent islogged and theloop terminated. The program continues
a theline of codereading“c = 0;”

PLAN allowed in trigger code

Changedin: 1.5

Description: Before Firebird 1.5, atrigger containing aPLAN statement would be rejected by the compiler. Now
avalid plan can be included and will be used.

48

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-psql-coding.html#fblangref50-psql-leave

Chapter 9

Context variables

Tip

Find amore recent version at Firebird 5.0 Language Reference: Context Variables

CURRENT CONNECTI ON

Tip

Find a more recent version at Firebird 5.0 Language Reference: CURRENT CONNECTION

Availablein: DSQL, PSQL
Addedin: 1.5
Description: CURRENT _CONNECTI ON returns a unigue identifier for the current connection.
Type: INTEGER
Examples:
sel ect current_connection from rdb$dat abase

execut e procedure P_Logi n(current_connecti on)

The value of CURRENT_CONNECT! ONis stored on the database header page and reset upon restore. Since the
engineitself is not interested in thisvalue, it is only incremented if the client reads it during a session. Hence it
isonly useful asaunique identifier, not as an indicator of the number of connections since the creation or latest
restoration of the database. Please note that thiswill change in Firebird 2.1.

CURRENT ROLE

Tip

Find amore recent version at Firebird 5.0 Language Reference: CURRENT ROLE

Availablein: DSQL, PSQL
Addedin: 1.0

Description: CURRENT_ROLE is a context variable containing the role of the currently connected user. If there
isno active role, CURRENT _RCOLE is NONE.

49

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars.html#fblangref50-contextvars-current-connection
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-current-role.html

Context variables

Type: VARCHAR(31)
Example:
if (current_role <> ' MANAGER)
then exception only_nanagers_nay_del et e;

el se
del ete from Custoners where custno = :custno;

CURRENT _ROLE awaysrepresentsavalid role or NONE. If auser connectswith anon-existing role, the engine
silently resetsit to NONE without returning an error.

CURRENT_TRANSACTI ON

Tip

Find amore recent version at Firebird 5.0 Language Reference: CURRENT TRANSACTION

Availablein: DSQL, PSQL
Addedin: 1.5
Description: CURRENT _TRANSACTI ON contains the unique identifier of the current transaction.
Type: INTEGER
Examples:
sel ect current_transaction from rdb$dat abase

New. Txn_I D = current _transacti on;

The value of CURRENT_TRANSACTI ON is stored on the database header page and reset upon restore. Unlike
CURRENT _CONNECTI ON, itisincremented with every new transaction, whether the client readsthe value or not.

CURRENT _USER

Tip

Find amore recent version at Firebird 5.0 Language Reference: CURRENT USER

Availablein: DSQL, PSQL
Added in: 1.0

Description: CURRENT _USER is a context variable containing the name of the currently connected user. It is
fully equivalent to USER.

Type: VARCHAR(31)

50

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-current-transaction.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-current-user.html

Context variables

Example:
create trigger bi_customers for custonmers before insert as
begi n
New. added_by = CURRENT_USER;
New. pur chases = 0;
end
Tip

Find a more recent version at Firebird 5.0 Language Reference: DELETING

Availablein: PSQL
Addedin: 1.5

Description: Availableintriggersonly, DELETI NGindicatesif thetrigger fired because of aDELETE operation.
Intended for use in multi-action triggers.

Type: boolean

Example:
if (deleting) then
begi n

insert into Removed_Cars (id, nake, nodel, renoved)

val ues (old.id, old.nmke, old.nodel, current_tinestanp);
end

GDSCODE

Tip

Find amore recent version at Firebird 5.0 Language Reference: GDSCODE

Availablein: PSQL
Addedin: 1.5

Description: In a WHEN GDSCODE handling block, the GDSCCDE context variable contains a numerical
representation of the current Firebird error code. It is 0 in WHEN SQLCODE, WHEN EXCEPTION and WHEN
ANY handlers, aswell as everywhere else in PSQL.

Type: INTEGER

Example:

when gdscode grant_obj notfound, gdscode grant fld_notfound,
gdscode grant_nopriv, gdscode grant_nopriv_on_base

51

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-deleting.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-gdscode.html

Context variables

do

begi n
execute procedure |og_grant_error(gdscode);
exit;

end

Please notice: After WHEN GDSCODE, you must use symbolic names like grant_obj_notfound etc. But the

GDSCODE context variableisan INTEGER. If you want to compare it against a certain error, you have to use the
numeric value, e.g. 335544551 for grant_obj_notfound.

| NSERTI NG

Tip

Find amore recent version at Firebird 5.0 Language Reference: INSERTING

Availablein: PSQL
Added in: 1.5

Description: Available in triggers only, | NSERTI NG indicates if the trigger fired because of an INSERT
operation. Intended for use in multi-action triggers.

Type: boolean
Example:
if (inserting or updating) then
begi n
if (new.serial_numis null) then

new. seri al _num = gen_id(gen_serials, 1);
end

ROW COUNT

Tip

Find amore recent version at Firebird 5.0 Language Reference: ROW_COUNT

Availablein: PSQL
Added in: 1.5

Description: The ROW_COUNT context variable contains the number of rows affected by the most recent DML
statement (INSERT, UPDATE or DELETE) in the current trigger or stored procedure.

Type: INTEGER
Example:

update Figures set Nunmber = 0 where id = :id;

52

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-inserting.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-row-count.html

Context variables

if (row _count = 0) then
insert into Figures (id, Nunber) values (:id, 0);

Notes

e For SELECT statements, ROW COUNT currently returns 0.

¢ ROW_COUNT cannot be used to determine the number of rows affected by an EXECUTE STATEMENT or

SQLCODE

Tip

Find amore recent version at Firebird 5.0 Language Reference: SQLCODE

Availablein: PSQL
Added in: 1.5

Description: In a WHEN SQLCODE handling block, the SQLCODE context variable contains the current SQL
error code. In aWHEN ANY block it contains the SQL error code if indeed an SQL error occurred; otherwise

it contains 0. SQLCODE isaso 0 in WHEN GDSCODE and WHEN EXCEPTION handlers, as well as everywhere
elsein PSQL.

Type: INTEGER
Example:

when any
do
begi n
if (sqglcode <> 0) then
Msg = ' An SQL error occurred!';
el se
Msg = ' Sonet hi ng bad happened!';
exception ex_custom Msg;
end

UPDATI NG

Tip

Find a more recent version at Firebird 5.0 Language Reference: UPDATING

Availablein: PSQL
Addedin: 1.5

Description: Available in triggers only, UPDATI NG indicates if the trigger fired because of an UPDATE
operation. Intended for use in multi-action triggers.

53

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-sqlcode.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-contextvars-updating.html

Context variables

Type: boolean
Example:

if (inserting or updating) then
begi n
if (new.serial_numis null) then
new. seri al _num = gen_id(gen_serials, 1);
end

Chapter 10

Internal functions

Tip

Find a more recent version at Firebird 5.0 Language Reference: Built-in Scalar Functions

COALESCE()

Tip

Find amore recent version at Firebird 5.0 Language Reference: COALESCE()

Availablein: DSQL, ESQL, PSQL
Addedin: 1.5

Description: The COALESCE function takes two or more arguments and returns the value of the first non-NULL
argument. If all the arguments evaluate to NULL, the result isNULL.

Return type: Depends on input.

Syntax:
COALESCE (<expl>, <exp2> [, <expN> ...])
Example:
sel ect
coal esce (N cknarme, FirstNanme, "M./Ms."') || " ' || LastNane

as Ful | Name
from Per sons

This example picks the Nickname from the Persons table. If it happens to be NULL, it goes on to FirstName. If
that too isNULL, “Mr./Mrs.” isused. Finaly, it addsthe family name. All inal, it tries to use the available data
to compose afull namethat is asinformal as possible. Notice that this scheme only works if absent nicknames

and first names are really NULL: if one of them is an empty string instead, COALESCE will happily return that
to the caller.

Note

In Firebird 1.0.x, where COALESCE is not available, you can accomplish the same with the * nvl external
functions.

55

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions.html
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-conditional.html#fblangref50-scalarfuncs-coalesce

Internal functions

EXTRACT()

Tip

Find amore recent version at Firebird 5.0 Language Reference: EXTRACT()

Availablein: DSQL, ESQL, PSQL
Added in: 1B 6

Description: Extracts and returns an element from a DATE, TIME or TIMESTAMP expression. It was aready
added in InterBase 6, but not documented in the Language Reference at the time.

Return type: SMALLINT or DECIMAL(6,4)

Syntax:

EXTRACT (<part> FROM <dat eti me>)

<part > YEAR | MONTH | DAY | WEEKDAY | YEARDAY
| HOUR | M NUTE | SECOND

An expression of type DATE, TIME or TI MESTAMP

<dateti ne>

Thereturned datatypeis DECIMAL (6,4) for the SECOND part and SMALLINT for all others. Therangesare shown
in the table below.

If you try to extract a part that isn't present in the date/time argument (e.g. SECOND from a DATE or YEAR
from a TIME), an error occurs.

Table 10.1. Rangesfor EXTRACT results

Part Range Comment
YEAR 19999

MONTH 1-12

DAY 1-31

WEEKDAY 0-6 0 = Sunday
YEARDAY 0-365 0= January 1
HOUR 0-23

MINUTE 0-59

SECOND 0.0000-59.999

56

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-datetime.html#fblangref50-scalarfuncs-extract

Internal functions

NULLIF()

Tip

Find a more recent version at Firebird 5.0 Language Reference: NULLIF()

Availablein: DSQL, ESQL, PSQL
Added in: 1.5

Description: NULLIF returns the value of the first argument, unlessit is equal to the second. In that case, NULL
isreturned.

Return type: Depends on input.
Syntax:

NULLI F (<expl>, <exp2>)
Example:
sel ect avg(nullif(Wight, -1)) from Fat Peopl e
This will return the average weight of the persons listed in FatPeople, excluding those having a weight of -1,

since AVG skips NULL data. Presumably, -1 indicates “weight unknown” in this table. A plain AVG(Weight)
would include the -1 weights, thus skewing the result.

Note
In Firebird 1.0.x, where NULLIF is not available, you can accomplish the same with the *nul | i f external
functions.
SUBSTRING()
Tip

Find amore recent version at Firebird 5.0 Language Reference: SUBSTRING()

Availablein: DSQL, ESQL, PSQL
Added in: 1.0

Description: Returns a string's substring starting at the given position, either to the end of the string or with
agiven length.

Return type: CHAR(n)
Syntax:

SUBSTRI NG <str> FROM startpos [FOR I ength])

57

https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-conditional.html#fblangref50-scalarfuncs-nullif
https://www.firebirdsql.org/file/documentation/chunk/en/refdocs/fblangref50/fblangref50-functions-string.html#fblangref50-scalarfuncs-substring

Internal functions

<str> := any expression evaluating to a string
startpos and length nust be integer literals

SUBSTRING returns the stream of bytes starting at byte position st art pos (the first byte position being 1).
Without the FOR argument, it returns all the remaining bytes in the string. With FOR, it returns | engt h bytes
or the remainder of the string, whichever is shorter.

SUBSTRING can be used with:

» Any string or (var)char argument, regardless of its character set;
* Subtype O (binary) BLOBS;
* Subtype 1 (text) BLOBS, if the character set has 1 byte per character.

SUBSTRING can not be used with text BLOBSs that have an underlying multi-byte character set.
Example:

i nsert into Abbr Names(Abbr Nane)
sel ect substring(LongName from1 for 3) from LongNanes

58

Chapter 11

External functions (UDFs)

External functions must be “declared” (made known) to the database before they can be used. Firebird ships
with two external function libraries:

e i b_udf —inherited from InterBase;
» fbudf —anew library using descriptors, present as from Firebird 1.0 (Windows) and 1.5 (Linux).

Users can aso create their own UDF libraries or acquire them from third parties.

addDay

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returnsthe first argument with nunber days added. Use negative numbers to subtract.
Return type: TIMESTAMP
Syntax:

addday (atinestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addDay

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addDay' MODULE _NAME ' f budf

addHour

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the first argument with nunber hours added. Use negative numbers to subtract.
Return type: TIMESTAMP

Syntax:

addhour (atinestanp, nunber)

59

External functions (UDFs)

Declaration:
DECLARE EXTERNAL FUNCTI ON addHour
TI MESTAMP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addHour' MODULE_NAME ' f budf'’

addM | I 1 Second

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the first argument with nunber milliseconds added. Use negative numbers to subtract.
Return type: TIMESTAMP
Syntax:

addm | Ii second (atinestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addM | |'i Second

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT "addM | |i Second" MODULE_NAME ' f budf"’

addM nut e

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returnsthe first argument with nunber minutes added. Use negative numbers to subtract.
Return type: TIMESTAMP
Syntax:

addm nute (atinmestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addM nute

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addM nute' MODULE_NAME ' f budf'

addMont h

Library: fbudf

60

External functions (UDFs)

Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the first argument with nunber months added. Use negative numbersto subtract.
Return type: TIMESTAMP
Syntax:

addnmont h (ati nestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addMont h

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addMont h* MODULE _NAME ' f budf'

addSecond

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the first argument with nunber seconds added. Use negative numbers to subtract.
Return type: TIMESTAMP
Syntax:

addsecond (ati nmestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addSecond

TI MESTAWP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addSecond’" MODULE _NAME ' f budf®

addWeek

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the first argument with nunber weeks added. Use negative numbers to subtract.
Return type: TIMESTAMP

Syntax:

addweek (ati nestanp, nunber)

61

External functions (UDFs)

Declaration:
DECLARE EXTERNAL FUNCTI ON addWeek
TI MESTAMP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addWeek' MODULE _NAME ' f budf'’

addYear

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the first argument with nunber years added. Use negative numbers to subtract.
Return type: TIMESTAMP
Syntax:

addyear (atinestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addYear

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addYear' MODULE_NAME ' fbudf'’

asci i _char

Library: ib_udf
Changedin: 1.0
Description: Returnsthe ASCII character corresponding to the integer value passed in.
Return type: CHAR(2)
Syntax (unchanged):
ascii_char (intval)
Declaration (changed):
DECLARE EXTERNAL FUNCTI ON asci i _char
I NTEGER
RETURNS CSTRING(1) FREE IT
ENTRY_PO NT ' | B_UDF_ascii_char' MODULE_NAME 'ib_udf'

The declaration has been changed to reflect the fact that the UDF as such returns a 1-character C
string, not an SQL CHAR(1) as stated in the InterBase declaration. The engine will passit on to the
caller as a CHAR(1) though.

62

External functions (UDFs)

dow

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the day of the week from atimestamp argument. The returned name may be localized.
Return type: VARCHAR(15)
Syntax:

dow (ati mest anp)
Declaration:

DECLARE EXTERNAL FUNCTI ON dow

Tl MESTAWP,

VARCHAR(15) RETURNS PARAMETER 2
ENTRY_PO NT ' DOW MODULE_NAME ' f budf"’

See also: sdow

dpower

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns x to the y'th power.
Return type: DOUBLE PRECISION
Syntax:
dpower (x, Yy)
Declaration:
DECLARE EXTERNAL FUNCTI ON dPower
DOUBLE PRECI SI ON BY DESCRI PTOR, DOUBLE PRECI SI ON BY DESCRI PTOR,
DOUBLE PRECI SI ON BY DESCRI PTOR

RETURNS PARAMETER 3
ENTRY_PO NT ' power' MODULE_NAME ' f budf'

get Exact Ti nest anp

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

63

External functions (UDFs)

Description: Returns the system time with milliseconds precision. This function was added because
CURRENT_TI MESTAMP—at leastin pre-2.0 versionsof Firebird—has. 0000 inthefractional part of the second.

Return type: TIMESTAMP
Syntax:
get exactti mest anp()
Declaration:
DECLARE EXTERNAL FUNCTI ON get Exact Ti mest anp

TI MESTAMP RETURNS PARAVETER 1
ENTRY_PO NT ' get Exact Ti mest anp'’ MODULE_NAME ' f budf '

| 64r ound
Seer ound.
| 64t runcat e
Seetruncat e.
| og
Library: ib_udf
Changedin: 1.5

Description: In Firebird 1.5 and up, | og(x, y) returns the the base-x logarithm of y. In Firebird 1.0.x and
InterBase, it erroneously returns the base-y logarithm of x.

Return type: DOUBLE PRECISION
Syntax (unchanged):
log (x,)
Declaration (unchanged):
DECLARE EXTERNAL FUNCTI ON | og
DOUBLE PRECI SI ON, DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_| og' MODULE_NAME 'ib_udf"

Warning

If any of your pre-1.5 databases use | og, check your PSQL and application code. It may contain workarounds
to return the right results. Under Firebird 1.5 and up, any such workarounds should be removed or you'll get
the wrong resullts.

External functions (UDFs)

| pad

Library: ib_udf
Addedin: 1.5
Changedin: 1.5.2
Description: Returns the input string | eft-padded with padchar suntil endl engt h isreached.
Return type: CHAR(n)
Syntax:

| pad (str, endlength, padchar)
Declaration:

DECLARE EXTERNAL FUNCTI ON | pad

CSTRI NG 255), | NTEGER, CSTRI NG 1)

RETURNS CSTRI NG(255) FREE I T
ENTRY_POI NT ' | B_UDF_| pad’ MODULE_NAME 'ib_udf"

Notes
¢ InFirebird 1.5.1 and below, the default declaration uses CSTRING(80) instead of CSTRING(255).

« Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

« When calling this function, make sure endl engt h does not exceed the declared result length.

[trim

Library: ib_udf
Changedin: 1.5,1.5.2

Description: Returnsthe input string with any |eading space charactersremoved. In Firebird 1.0.x, thisfunction
returns NULL if theinput stringisempty or NULL. In 1.5 and aboveit returns' ' (an empty string) in these cases.

Return type: CHAR(n)
Syntax (unchanged):
[trim(str)
Declaration:
DECLARE EXTERNAL FUNCTION Itrim

CSTRI NG(255)
RETURNS CSTRI NG(255) FREE | T

65

External functions (UDFs)

ENTRY_PO NT ' I B_UDF | trim MODULE_NAME 'ib_udf’

Notes
¢ InFirebird 1.5.1 and below, the default declaration uses CSTRING(80) instead of CSTRING(255).

« Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters

*nul |if

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function NULLIF()

Description: Thefour *nul I i f functions—for integers, bigints, doubles and strings, respectively —each return
thefirst argument if it is not equal to the second. If the arguments are equal, the functions return NULL.

Return type: Varies, see declarations.
Syntax:
inullif (intl, int2)
i 64nul lif (bigintl, bigint2)
dnul l'i f (doubl e1l, doubl e2)
snul lif (stringl, string2)

Asfrom Firebird 1.5, use of the new internal function NULLIF is preferred.

Warnings

» Thesefunctionsreturn NULL when the second argument isNULL, eveniif thefirst argument isaproper value.
Thisisawrong result. The NULLIF internal function doesn't have this bug.

e i64nul lif anddnul I'if will returnwrong and/or bizarre resultsif it is not 100% clear to the engine that
each argument is of the intended type (NUMERIC(18,0) or DOUBLE PRECISION). If in doubt, cast them both

L explicitly to the declared type (see declarationsbelow). |

Declarations;

DECLARE EXTERNAL FUNCTION inullif
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS | NT BY DESCRI PTOR
ENTRY_PO NT "i Nul ['1f' MODULE_NAME ' f budf’

DECLARE EXTERNAL FUNCTI ON i 64nul i f
NUVERI C(18, 4) BY DESCRI PTOR, NUMERI C(18, 4) BY DESCRI PTOR
RETURNS NUMERI C(18, 4) BY DESCRI PTOR
ENTRY_PO NT "i Nul ['1f' MODULE_NAME ' f budf’

DECLARE EXTERNAL FUNCTI ON dnul |i f
DOUBLE PREC!I SI ON BY DESCRI PTOR, DOUBLE PRECI SI ON BY DESCRI PTOR
RETURNS DOUBLE PRECI SI ON BY DESCRI PTOR

66

External functions (UDFs)

ENTRY_PO NT " dNul ['1f' MODULE_NAME ' f budf'’

DECLARE EXTERNAL FUNCTI ON snul |i f
VARCHAR(100) BY DESCRI PTOR, VARCHAR(100) BY DESCRI PTOR,
VARCHAR(100) BY DESCRI PTOR RETURNS PARAMETER 3
ENTRY_PO NT "sNul I I f* MODULE_NAME ' f budf"’

*nvi

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function COALESCE()

Description: The four nvl functions — for integers, bigints, doubles and strings, respectively — are NULL
replacers. They each return the first argument's value if it isnot NULL. If the first argument is NULL, the value
of the second argument is returned.

Return type: Varies, see declarations.
Syntax:
i nvi (intl, int2)
i 64nvl (bigintl, bigint2)
dnvl (doubl el, doubl e2)
snvl (stringl, string2)

Asfrom Firebird 1.5, use of the new internal function COALESCE is preferred.

Warning

i 64nvl and dnvl will return wrong and/or bizarre resultsiif it is not absolutely clear to the engine that each
argument is of the intended type (NUMERIC(18,0) or DOUBLE PRECISION). If in doubt, cast both arguments
explicitly to the declared type (see declarations below).

Declarations;

DECLARE EXTERNAL FUNCTI ON i nvl
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS | NT BY DESCRI PTOR
ENTRY_PO NT "idNvl' MODULE_NAME ' f budf®

DECLARE EXTERNAL FUNCTI ON i 64nvl
NUMERI C(18, 0) BY DESCRI PTOR, NUMERI C(18, 0) BY DESCRI PTOR
RETURNS NUMERI C(18, 0) BY DESCRI PTOR
ENTRY_PO NT "idNvl' MODULE _NAME ' f budf®

DECLARE EXTERNAL FUNCTI ON dnvl
DOUBLE PREC!I SI ON BY DESCRI PTOR, DOUBLE PRECI SI ON BY DESCRI PTOR
RETURNS DOUBLE PRECI SI ON BY DESCRI PTOR
ENTRY_PO NT i dNvl*® MODULE _NAME ' f budf'’

DECLARE EXTERNAL FUNCTI ON snvl

67

External functions (UDFs)

VARCHAR(100) BY DESCRI PTOR, VARCHAR(100) BY DESCRI PTOR,
VARCHAR(100) BY DESCRI PTOR RETURNS PARAMETER 3
ENTRY_PO NT 'sNvl' MODULE_NAME ' f budf’

right

Seesright.

round, i 64r ound

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Changedin: 1.5, 1.5.6

Description: Thesefunctionsreturn thewhole number that isnearest to their (scaled numeric/decimal) argument.
They do not work with floats or doubles.

Return type: INTEGER / NUMERIC(18,4)
Syntax:

round (nunber)
i 64round (bi gnunber)

Caution

Halves are always rounded upward, i.e. away from zero for positive numbers and toward zero for negative
numbers. For instance, 3. 5 isrounded to 4, but - 3. 5 isrounded to - 3.

Bug alert
In versions 1.0 through 1.5.5, these functions are broken for negative numbers:

e Anything between 0 and -0.6 (that's right: -0.6, not -0.5) is rounded to O.
Anything between -0.6 and -1 is rounded to +1 (plus 1).

Anything between -1 and -1.6 is rounded to -1.

Anything between -1.6 and -2 is rounded to -2.

Etcetera.

L] L] L] L]

Fixed in 1.5.6 (backport from 2.5).

Declarations:
In Firebird 1.0.x, the entry point for both functionsisr ound:

DECLARE EXTERNAL FUNCTI ON Round

68

External functions (UDFs)

I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' round" MODULE _NAME ' f budf®

DECLARE EXTERNAL FUNCTI ON i 64Round
NUMERI C(18, 4) BY DESCRI PTOR, NUMERI C(18, 4) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' round' MODULE NAME ' f budf'
In Firebird 1.5, the entry point has been renamed to f br ound:
DECLARE EXTERNAL FUNCTI ON Round
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR

RETURNS PARAMETER 2
ENTRY_PO NT ' f bround'" MODULE_NAME ' f budf'’

DECLARE EXTERNAL FUNCTI ON i 64Round
NUVERI C(18, 4) BY DESCRI PTOR, NUMERI C(18, 4) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' f bround' MODULE_NAME ' f budf'

If you move an existing database from Firebird 1.0.x to 1.5 or higher, drop any existing * r ound and
*t runcat e declarations and declare them anew, using the updated entry point names.

r pad

Library: ib_udf
Added in: 1.5
Changedin: 1.5.2
Description: Returns the input string right-padded with padchar suntil endl engt h isreached.
Return type: CHAR(n)
Syntax:

rpad (str, endlength, padchar)
Declaration:

DECLARE EXTERNAL FUNCTI ON r pad

CSTRI NG 255), | NTEGER, CSTRI NG(1)

RETURNS CSTRI NG(255) FREE I T
ENTRY_POI NT ' | B_UDF_rpad'" MODULE_NAME 'ib_udf"

Notes
e InFirebird 1.5.1 and below, the default declaration uses CSTRING(80) instead of CSTRING(255).

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

« When calling this function, make sure endl engt h does not exceed the declared result length.

69

External functions (UDFs)

rtrim

Library: ib_udf
Changedin: 1.5,1.5.2

Description: Returnsthe input string with any trailing space characters removed. In Firebird 1.0.x, thisfunction
returns NULL if theinput stringisempty or NULL. In 1.5 and aboveit returns' ' (an empty string) in these cases.

Return type: CHAR(n)
Syntax (unchanged):
rtrim(str)
Declaration:
DECLARE EXTERNAL FUNCTION rtrim
CSTRI NE 255)

RETURNS CSTRI NG(255) FREE | T
ENTRY_PO NT ' IB_UDF rtrim MODULE_NAME 'ib_udf’

Notes
¢ InFirebird 1.5.1 and below, the default declaration uses CSTRING(80) instead of CSTRING(255).

« Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters

sdow

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the abbreviated day of the week from a timestamp argument. The returned abbreviation
may be localized.

Return type: VARCHAR(5)
Syntax:
sdow (ati mest anp)
Declaration:
DECLARE EXTERNAL FUNCTI ON sdow
TI MESTAWP,

VARCHAR(5) RETURNS PARAMETER 2
ENTRY_PO NT ' SDON MODULE_NAME ' f budf*

70

External functions (UDFs)

See also: dow

sright

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)

Description: Returnsthe rightmost nunthar s characters of the input string. Only works with 1-byte character
Sets.

Return type: VARCHAR(100)
Syntax:
sright (str, nunthars)
Declaration:
DECLARE EXTERNAL FUNCTI ON sri ght
VARCHAR(100) BY DESCRI PTOR, SMALLI NT,

VARCHAR(100) BY DESCRI PTOR RETURNS PARAMETER 3
ENTRY_PO NT 'right' MODULE_NAME ' f budf'

string2bl ob

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the input string as a BLOB.
Return type: BLOB
Syntax:
string2blob (str)
Declaration:

DECLARE EXTERNAL FUNCTI ON string2bl ob
VARCHAR(300) BY DESCRI PTOR,
BLOB RETURNS PARAMETER 2
ENTRY_PO NT 'string2bl ob' MODULE _NAME ' f budf'

substr

Library: ib_udf

71

External functions (UDFs)

Changedin: 1.0, 1.5.2

Description: Returns a string's substring from st ar t pos to endpos, inclusively. Positions are 1-based. If
endpos is past the end of the string, Firebird'ssubst r returns all the characters from st ar t pos to the end
of the string. InterBase'ssubst r returned NULL in this case.

Return type: CHAR(n)
Syntax (unchanged):
substr (str, startpos, endpos)
Declaration:
DECLARE EXTERNAL FUNCTI ON substr
CSTRI NG 255), SMALLI NT, SMALLINT

RETURNS CSTRI NG(255) FREE I T
ENTRY_POI NT ' | B_UDF_substr' MODULE_NAME 'ib_udf'

Notes
¢ InFirebird 1.5.1 and below, the default declaration uses CSTRING(80) instead of CSTRING(255).

« Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters

Tip

Although the function arguments are dlightly different, consider using the internal SQL function SUBSTRING
instead, for better compatibility.

substrl| en

Library: ib_udf

Added in: 1.0

Changedin: 1.5.2

Better alternative: Internal function SUBSTRING()

Description: Returns the substring starting at st art pos and having | engt h characters (or less, if the end of
the string is reached first). Positions are 1-based. If either st art pos or | engt h is smaller than 1, an empty
string is returned.

Return type: CHAR(n)
Syntax:

substrlen (str, startpos, |ength)
Declaration:

DECLARE EXTERNAL FUNCTI ON substrl en

72

External functions (UDFs)

CSTRI NG(255), SMALLI NT, SMALLI NT
RETURNS CSTRI NG(255) FREE I T
ENTRY_PO NT ' | B_UDF_substrlen' MODULE_NAVE 'ib_udf'

Notes
e InFirebird 1.5.1 and below, the default declaration uses CSTRING(80) instead of CSTRING(255).

« Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters

Tip

Firebird 1.0 has also implemented the internal SQL function SUBSTRING, effectively rendering substr | en
obsolete in the same version in which it was introduced. In new code, use SUBSTRING.

truncate,i 64truncat e

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Changedin: 1.5, 1.5.6

Description: These functionsreturn the whole-number portion of their (scaled numeric/decimal) argument. They
do not work with floats or doubles.

Return type: INTEGER / NUMERIC(18)

Syntax:

truncate (nunber)
i 64t runcat e (bi gnunber)

Caution

Both functions round to the nearest whole number that is lower than or equal to the argument. This means that
negative numbers are also “truncated” downward. For instance, t r uncat e(- 2. 37) returns- 3.

Bug alert

Contrary to what's mentioned above, in versions 1.0 through 1.5.5 anything between -1 and 0 is truncated to 0.
This anomaly has been corrected in Firebird 1.5.6 and above (as a backport from 2.5).

Declarations:
In Firebird 1.0.x, the entry point for both functionsist r uncat e:

DECLARE EXTERNAL FUNCTI ON Truncate
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT 'truncate' MODULE_NAME ' f budf'’

73

External functions (UDFs)

DECLARE EXTERNAL FUNCTI ON i 64Truncat e
NUMERI C(18) BY DESCRI PTOR, NUVERI C(18) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT 'truncate' MODULE _NAME ' f budf'

In Firebird 1.5, the entry point has been renamed to f bt r uncat e:

DECLARE EXTERNAL FUNCTI ON Truncate
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' fbtruncate' MODULE_NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON i 64Truncate
NUMERI C(18) BY DESCRI PTOR, NUMERI C(18) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' fbtruncate' MODULE NAME ' f budf'

If you move an existing database from Firebird 1.0.x to 1.5 or higher, drop any existing * r ound and
*t runcat e declarations and declare them anew, using the updated entry point names.

74

Appendix A:
Notes

Character set NONE data accepted “as is”
In Firebird 1.5.1 and up

Firebird 1.5.1 has improved the way character set NONE data are moved to and from fields or variables with
another character set, resulting in fewer trandliteration errors.

In Firebird 1.5.0, from a client connected with character set NONE, you could read data in two incompatible
character sets — such as SJIS (Japanese) and WIN1251 (Russian) — even though you could not read one of those
character sets while connected from a client with the other character set. Data would be received “asis’ and
be stored without raising an exception.

However, from this character set NONE client connection, an attempt to update any Russian or Japanese
data columns using either parameterized queries or literal strings without introducer syntax would fail with
trandliteration errors; and subsequent queries on the stored “NONE” data would similarly fail.

In Firebird 1.5.1, both problems have been circumvented. Data received from the client in character set NONE
are still stored “asis’ but what is stored isan exact, binary copy of the received string. In the reverse case, when
stored data are read into this client from columns with specific character sets, there will be no tranditeration
error. When the connection character set isNONE, no attempt ismade in either case to resolve the string to well-
formed characters, so neither the write nor the read will throw atranditeration error.

This opens the possibility for working with data from multiple character sets in a single database, as long as
the connection character set is NONE. The client has full responsibility for submitting strings in the appropriate
character set and converting strings returned by the engine, as needed.

Abstraction layers that have to manage this can read the low byte of the sql subt ype field in the XSQLVAR
structure, which contains the character set identifier.

While character set NONE literals are accepted and implicitly stored in the character set of their context, the
use of introducer syntax to coerce the character sets of literals is highly recommended when the application
is handling literals in a mixture of character sets. This should avoid the string's being misinterpreted when the
application shifts the context for literal usage to a different character set.

Note

Coercion of the character set, using the introducer syntax or casting, is still reguired when handling
heterogeneous character sets from aclient context that is anything other than NONE. Both methods are shown
below, using character set 1508859 _1 as an example target. Noticethe“_" prefix in the introducer syntax.

Introducer syntax:
_1'SC8B859 1 nystring

Casting:
L CAST (nystring AS VARCHAR(n) CHARACTER SET |SMW859 1) |

75

Notes

Understanding the WITH LOCK clause

This note looks a little deeper into explicit locking and its ramifications. The WITH LOCK feature, added in
Firebird 1.5, provides alimited explicit pessimistic locking capability for cautious use in conditions where the
affected row set is:

a. extremely small (idedly, asingleton), and
b. precisely controlled by the application code.

Pessimistic locks are rarely needed in Firebird. This is an expert feature, intended for use by those who
thoroughly understand its consequences. Knowledge of the various levels of transaction isolation is essential.
WITH LOCK is available in DSQL and PSQL, and only for top-level, single-table SELECTS. As stated in the
reference part of this guide, WITH LOCK is not available:

* inasubquery specification;

o forjoined sets;

» with the DISTINCT operator, a GROUP BY clause or any other aggregating operation;
e withaview;

» with the output of a selectable stored procedure;

» with an externa table.

Syntax and behaviour

SELECT ... FROM single_table
[WHERE . . .]
[FOR UPDATE [OF ...]]

[WTH LOCK]

If the WITH LOCK clause succeeds, it will secure alock on the selected rows and prevent any other transaction
from obtaining write access to any of those rows, or their dependants, until your transaction ends.

If the FOR UPDATE clause is included, the lock will be applied to each row, one by one, asit is fetched into
the server-side row cache. It becomes possible, then, that a lock which appeared to succeed when requested
will nevertheless fail subsequently, when an attempt is made to fetch a row which becomes locked by another
transaction.

Asthe engine considers, in turn, each record falling under an explicit lock statement, it returns either the record
version that is the most currently committed, regardliess of database state when the statement was submitted,
or an exception.

Wait behaviour and conflict reporting depend on the transaction parameters specified in the TPB block:

Table A.1. How TPB settings affect explicit locking

TPB mode Behaviour
isc_tpb_consistency Explicit locks are overridden by implicit or explicit table-level locks and are
ignored.
isC_tpb_concurrency If arecord is modified by any transaction that was committed since the
transaction attempting to get explicit lock started, or an active transaction has

76

Notes

TPB mode Behaviour
+isc_tpb_nowait performed a modification of this record, an update conflict exception is raised
immediately.
isC_tpb_concurrency If therecord is modified by any transaction that has committed since the
_ _ transaction attempting to get explicit lock started, an update conflict exception is
+isc_tpb_wait raised immediately.

If an active transaction is holding ownership on thisrecord (via explicit locking
or by anormal optimistic write-lock) the transaction attempting the explicit lock
waits for the outcome of the blocking transaction and, when it finishes, attempts
to get the lock on the record again. This means that, if the blocking transaction
committed a modified version of this record, an update conflict exception will be
raised.

isc_tpb_read_committed | If thereisan active transaction holding ownership on this record (via explicit

locking or normal update), an update conflict exception is raised immediately.
+isc_tpb_nowait

isc_tpb_read committed | If thereis an active transaction holding ownership on this record (via explicit
locking or by a normal optimistic write-lock), the transaction attempting the
+isc_tpb_wait explicit lock waits for the outcome of blocking transation and when it finishes,
attempts to get the lock on the record again.

Update conflict exceptions can never be raised by an explicit lock statement in
this TPB mode.

How the engine deals with WITH LOCK

When an UPDATE statement triesto accessarecord that islocked by another transaction, it either raisesan update
conflict exception or waitsfor the locking transaction to finish, depending on TPB mode. Engine behaviour here
isthe same asif thisrecord had already been modified by the locking transaction.

No special gdscodes are returned from conflicts involving pessimistic locks.

The engine guarantees that al records returned by an explicit lock statement are actually locked and do meet
the search conditions specified in WHERE clause, as long as the search conditions do not depend on any other
tables, viajoins, subqueries, etc. It also guaranteesthat rows not meeting the search conditionswill not be locked
by the statement. It can not guarantee that there are no rows which, though meeting the search conditions, are
not locked.

Note

This situation can arise if other, parallel transactions commit their changes during the course of the locking
statement's execution.

The engine locks rows at fetch time. This has important consequences if you lock several rows at once. Many
access methods for Firebird databases default to fetching output in packets of a few hundred rows (“buffered
fetches’). Most data access components cannot bring you the rows contained in the last-fetched packet, where
an error occurred.

77

Notes

The optional “OF <col um- nanmes>" sub-clause

The FOR UPDATE clause provides a technique to prevent usage of buffered fetches, optionally with the “OF
<col um- nanes>" subclause to enable positioned updates.

Tip

Alternatively, it may be possible in your access components to set the size of the fetch buffer to 1. Thiswould
enableyou to process the currently-locked row before the next isfetched and locked, or to handle errors without
rolling back your transaction.

Caveats using WITH LOCK

* Rolling back of an implicit or explicit savepoint releases record locks that were taken under that savepoint,
but it doesn't notify waiting transactions. Applications should not depend on this behaviour as it may get
changed in the future.

* While explicit locks can be used to prevent and/or handle unusual update conflict errors, the volume of
deadlock errors will grow unless you design your locking strategy carefully and control it rigorously.

* Most applications do not need explicit locks at al. The main purposes of explicit locks are (1) to prevent
expensive handling of update conflict errors in heavily loaded applications and (2) to maintain integrity of
objects mapped to arelational database in aclustered environment. If your use of explicit locking doesn't fall
in one of these two categories, then it's the wrong way to do the task in Firebird.

» Explicit locking isan advanced feature; do not misuseit! While solutionsfor these kinds of problems may be
very important for web sites handling thousands of concurrent writers, or for ERP/CRM systems operating
in large corporations, most application programs do not need to work in such conditions.

Examples using explicit locking
i. Simple

SELECT * FROM DOCUMENT WHERE | D=? W TH LOCK
ii. Multiple rows, one-by-one processing with DSQL cursor:

SELECT * FROM DOCUMENT VWHERE PARENT_I D=7
FOR UPDATE W TH LOCK

A note on CSTRING parameters

External functions involving strings often use the type CSTRING(n) in their declarations. This type represents
a zero-terminated string of maximum length n. Most of the functions handling CSTRINGs are programmed in
such away that they can accept and return zero-terminated strings of any length. So why the n? Because the
Firebird engine has to set up space to process the input an output parameters, and convert them to and from
SQL datatypes. Most strings used in databases are only dozens to hundreds of bytes long; it would be a waste
to reserve 32 KB of memory each time such a string is processed. Therefore, the standard declarations of most

78

Notes

CSTRING functions—as found in the filei b_udf . sql — specify alength of 255 bytes. (In Firebird 1.5.1 and
below, this default length is 80 bytes.) As an example, here's the SQL declaration of | pad:

DECLARE EXTERNAL FUNCTI ON | pad
CSTRI NG(255), | NTEGER, CSTRI NG 1)
RETURNS CSTRI NG(255) FREE | T
ENTRY_POI NT ' | B_UDF_| pad’ MODULE_NAME 'ib_udf"

Once you've declared a CSTRING parameter with a certain length, you cannot call the function with a longer
input string, or causeit to return a string longer than the declared output length. But the standard declarations are
just reasonabl e defaults; they're not cast in concrete, and you can change them if you want to. If you haveto | eft-
pad strings of up to 500 byteslong, then it's perfectly OK to change both 255'sin the declaration to 500 or more.

A specia caseiswhen you usually operate on short strings (say lessthen 100 bytes) but occasionally haveto call
the function with a huge (VAR)CHAR argument. Declaring CSTRING(32000) makes sure that all the callswill be
successful, but it will also cause 32000 bytes per parameter to be reserved, even in that majority of cases where
the strings are under 100 bytes. In that situation you may consider declaring the function twice, with different
names and different string lengths:

DECLARE EXTERNAL FUNCTI ON | pad
CSTRI NG(100), | NTEGER CSTRI NG(1)
RETURNS CSTRI NG(100) FREE I T
ENTRY_POI NT ' | B_UDF_| pad' MODULE_NAME 'ib_udf';

DECLARE EXTERNAL FUNCTI ON | padbi g
CSTRI NG&(32000), | NTEGER CSTRI NG 1)
RETURNS CSTRI NG(32000) FREE | T
ENTRY_PO NT ' | B_UDF_| pad’ MODULE_NAME ' i b_udf';

Now you cancal | pad() for al thesmall stringsand | padbi g() for the occasional monster. Notice how the
declared names in the first line differ (they determine how you call the functions from within your SQL), but
the entry point (the function name in the library) is the same in both cases.

79

Appendix B:
Document History

Theexact filehistory isrecorded in themanual modulein our CV Stree; see http://sourceforge.net/cvs/?group
id=9028

Revision History

1.0 4 Jul 2008 PV First publication, using 15-20% material from the Firebird Release
Notes.
11 8 Dec 2010 PV GLOBAL: Renamed all “Deprecated in” section headers to “ Better

aternative’. This also required editing the text immediately following
the header and in some cases additional text in the section (if the
“deprecation” was discussed in the section body).

Bookinfo: Added 1.5.6 to covered versions.

Introduction :: Versions covered: Added 1.5.6.

Introduction :: Authorship: Edited first paragraph. Added Frank
Ingermann to contributor list.

Reserved words :: Added in 1.0 and 1.5: Put 2nd list in aphabetical
order.

Reserved words :: To be added in future versions: Put list in
alphabetical order.

Miscellaneous language elements :: -- (single-line comment): Brought
last para within blockquote.

Miscellaneous language el ements: Added sections || (string
concatenator) and Shorthand casts.

DDL statements: Added section ALTER DOMAIN.

DDL statements:: ALTER TABLE: Added section ADD column: Context
variables as defaults.

DDL statements:: ALTER TABLE: Added section FOREIGN KEY without
target column references PK.

DDL statements: Added section CREATE DOMAIN.

DDL statements :: CREATE TABLE: Added section Context variables as
column defaults.

DDL statements :: CREATE TABLE: Added section FOREIGN KEY
without target column references PK.

DML statements: Moved sections RELEASE SAVEPOINT, ROLLBACK
TO SAVEPOINT and SAVEPOINT into new chapter Transaction control
statements.

DML statements :: SELECT :: Aggregate functions; Extended
functionality :: Aggregate statements: Sricter HAVING and ORDER
BY: Edited second listitem. Commented out third listitem as it needs
research. Edited last paragraph.

DML statements :: SELECT :: FIRST and SKIP: Edited Description.
DML statements :: SELECT :: GROUP BY internal function, column
position, and CASE: Added 3rd listitem to Important box. Edited the
paras between the examples.

Transaction control statements: new chapter.

80

http://sourceforge.net/cvs/?group_id=9028
http://sourceforge.net/cvs/?group_id=9028

Document History

12

13

? Xxx 201?

4 Oct 2024

PV

MR

PSQL statements :: DECLARE [VARIABLE] with initialization: Indented
var declarations in Example.

PSQL statements :: EXECUTE STATEMENT :: Caveats with EXECUTE
STATEMENT: Changed SQL -> DSQL initem 4. Rewrote item 6.
PSQL statements: Added section FOR SELECT ... INTO ... DO.

Context variables :: CURRENT_CONNECTI ON: Improved Description.
Added note about upcoming changein 2.1 to last paragraph.

Context variables :: CURRENT_TRANSACTI ON: Improved
Description.

Context variables :: ROW COUNT: Edited Description. Edited second
Note.

External functions:: get Exact Ti mest anp: Edited Description.
External functions:: | og: Changed | og ->1 og(x, y) in Description.
External functions:: ri ght : movedtosri ght and left asymlink in
place.

External functions:: r ound, i 64r ound: Added 1.5.6 to Changed in.
Added Caution box. Edited and extended Bug warning box.

External functions:: subst r | en: Added “Better aternative’
formalpara.

External functions:: t runcat e, i 64t r uncat e: Added 1.5.6 to
Changed in. Added Caution box. Edited Warning box.

Notes :: Understanding the WITH LOCK clause :: Syntax and
behaviour: In table, aligned 1st column left, all rows top, and added
periods to sentencesin first two rows.

License notice: Added Frank Ingermann as contributor. Copyright end
year now 2010.

Context variables :: GDSCODE: Corrected Example: after WHEN
GDSCODE a symbolic name must follow, not a number. Added notice
after Example to explain same.

DML statements :: SELECT: New subsection [AS] beforerelation alias.
License notice: Copyright end year now 2011.

Added linksto Firebird 5.0 Language Reference as more recent
documentation

81

Appendix C:
License notice

The contents of this Documentation are subject to the Public Documentation License Version 1.0 (the
“License”); you may only use this Documentation if you comply with the terms of this License. Copies of the
License are available at https.//www.firebirdsgl.org/pdfmanual/pdl.pdf (PDF) and https.//www.firebirdsgl.org/
manual/pdl.html (HTML).

The Original Documentation istitled Firebird 1.5 Language Reference Update.
The Initial Writers of the Original Documentation are: Paul Vinkenoog et al.
Copyright (C) 2008-2024. All Rights Reserved. Initial Writers contact: paul at vinkenoog dot nl.

Writers and Editors of included PDL -licensed material (the“al.”) are: J. Beesley, Helen Borrie, Arno Brinkman,
Frank Ingermann, Alex Peshkov, Nickolay Samofatov, Dmitry Y emanov, Mark Rotteveel.

Included portions are Copyright (C) 2001-2024 by their respective authors. All Rights Reserved.

82

https://www.firebirdsql.org/pdfmanual/pdl.pdf
https://www.firebirdsql.org/manual/pdl.html
https://www.firebirdsql.org/manual/pdl.html

	Firebird 1.5 Language Reference Update
	Table of Contents
	Introduction
	Versions covered
	Authorship

	Reserved words
	Added in 1.0 but removed in 1.5
	Added in 1.0 and 1.5
	To be added in future versions

	Miscellaneous language elements
	-- (single-line comment)
	|| (string concatenator)
	Overflow checking

	Shorthand casts
	CASE construct
	Simple CASE
	Searched CASE

	Data types and subtypes
	BIGINT data type
	New character sets
	Character set NONE handling changed
	New collations

	DDL statements
	ALTER DOMAIN
	Rename domain
	SET DEFAULT to any context variable

	ALTER TABLE
	ADD column: Context variables as defaults
	ALTER COLUMN: POSITION now 1-based
	FOREIGN KEY without target column references PK
	UNIQUE constraints now allow NULLs
	USING INDEX subclause

	ALTER TRIGGER
	Multi-action triggers
	ALTER TRIGGER no longer increments table change count
	PLAN allowed in trigger code

	CREATE DATABASE
	16 Kb page size supported

	CREATE DOMAIN
	Context variables as defaults

	CREATE GENERATOR
	Maximum number of generators significantly raised

	CREATE INDEX
	UNIQUE indices now allow NULLs
	Maximum number of indices per table increased

	CREATE TABLE
	Context variables as column defaults
	FOREIGN KEY without target column references PK
	UNIQUE constraints now allow NULLs
	USING INDEX subclause

	CREATE TRIGGER
	Multi-action triggers
	CREATE TRIGGER no longer increments table change count
	PLAN allowed in trigger code

	CREATE VIEW
	PLAN subclause disallowed

	CREATE OR ALTER PROCEDURE
	CREATE OR ALTER TRIGGER
	DECLARE EXTERNAL FUNCTION
	BY DESCRIPTOR parameter passing
	RETURNS PARAMETER n

	DROP GENERATOR
	DROP TRIGGER
	DROP TRIGGER no longer increments table change count

	RECREATE PROCEDURE
	RECREATE TABLE
	RECREATE VIEW

	DML statements
	EXECUTE PROCEDURE
	SELECT
	Aggregate functions: Extended functionality
	Mixing aggregate functions from different contexts
	Aggregate functions and GROUP BY items inside subqueries
	Subqueries inside aggregate functions
	Nesting aggregate function calls
	Aggregate statements: Stricter HAVING and ORDER BY

	Ambiguous JOIN statements rejected
	[AS] before relation alias
	FIRST and SKIP
	GROUP BY UDF
	GROUP BY internal function, column position, and CASE
	HAVING: Stricter rules
	ORDER BY: Expressions and NULLs placement
	ORDER BY: Stricter rules with aggregate statements
	WITH LOCK

	Transaction control statements
	RELEASE SAVEPOINT
	ROLLBACK TO SAVEPOINT
	SAVEPOINT
	Internal savepoints
	Savepoints and PSQL

	PSQL statements
	BEGIN ... END blocks may be empty
	BREAK
	DECLARE [VARIABLE] with initialization
	EXCEPTION
	Rethrowing a caught exception
	Providing a custom error message

	EXECUTE PROCEDURE
	EXECUTE STATEMENT
	No data returned
	One row of data returned
	Any number of data rows returned
	Caveats with EXECUTE STATEMENT

	EXIT
	FOR EXECUTE STATEMENT ... DO
	FOR SELECT ... INTO ... DO
	AS CURSOR clause

	LEAVE
	PLAN allowed in trigger code

	Context variables
	CURRENT_CONNECTION
	CURRENT_ROLE
	CURRENT_TRANSACTION
	CURRENT_USER
	DELETING
	GDSCODE
	INSERTING
	ROW_COUNT
	SQLCODE
	UPDATING

	Internal functions
	COALESCE()
	EXTRACT()
	NULLIF()
	SUBSTRING()

	External functions (UDFs)
	addDay
	addHour
	addMilliSecond
	addMinute
	addMonth
	addSecond
	addWeek
	addYear
	ascii_char
	dow
	dpower
	getExactTimestamp
	i64round
	i64truncate
	log
	lpad
	ltrim
	*nullif
	*nvl
	right
	round, i64round
	rpad
	rtrim
	sdow
	sright
	string2blob
	substr
	substrlen
	truncate, i64truncate

	A. Notes
	Character set NONE data accepted “as is”
	Understanding the WITH LOCK clause
	Syntax and behaviour
	How the engine deals with WITH LOCK
	The optional “OF <column-names>” sub-clause
	Caveats using WITH LOCK
	Examples using explicit locking

	A note on CSTRING parameters

	B. Document History
	C. License notice

