
Firebird Conference 2019, Berlin

Firebird Butler in Python part I.
Introduction to Saturnin SDK

Pavel Císař
Saturnin/Saturnin SDK - lead developer
IBPhoenix & Firebird Project

Firebird Conference 2019
Berlin, 17-19 October

Firebird Conference 2019, Berlin

Part I.
Saturnin SDK 101

Firebird Conference 2019, Berlin 4 / 53

What is Saturnin SDK

Reference implementation of Firebird Butler
Development Platform in Python 3

✔ demonstration of functional implementation of
specifications for other implementers

✔ package for creating and using Firebird Butler
services in Python

✔ engineering toolset to build efficient, robust and
scalable solutions

✔ the base over which the Saturnin project is being
built

Firebird Conference 2019, Berlin 5 / 53

What is a Butler Service

● A Butler Service is basically a piece of software that uses ZeroMQ
socket and Firebird Butler Service Protocol (FBSP) for
communication over this ZeroMQ channel

● A service could use multiple ZeroMQ sockets for various
purposes, but only one primary socket is required to support the
Butler Service protocol

● They could do anything, but a well designed service does only one
task, or a small set of closely related tasks within single category

● We also introduced a category of microservices that do not
communicate via FBSP but use some other standard protocol to
communicate with other components (eg Firebird Butler Data Pipe
Protocol - FBDP)

Firebird Conference 2019, Berlin 6 / 53

What is ZeroMQ
● ZeroMQ (also known as ØMQ, 0MQ, or zmq) looks like an embeddable

networking library but acts like a concurrency framework

● It gives you sockets that carry atomic messages across various
transports like in-process, inter-process, TCP, and multicast

● You can connect sockets N-to-N with patterns like fan-out, pub-sub, task
distribution, and request-reply

● It's fast enough to be the fabric for clustered products

● Its asynchronous I/O model gives you scalable multicore applications,
built as asynchronous message-processing tasks

● It has a score of language APIs and runs on most operating systems

● ZeroMQ is from iMatix and is LGPLv3 open source

Firebird Conference 2019, Berlin 7 / 53

SDK Factsheet

➔ Requirements
✔ Python 3.6+, will move to Python 3.7 next year

✔ PyZMQ >=18.0.0

✔ Protobuf >=3.9.0

➔ Uses
✔ type annotations

✔ docstrings

✔ indent 4 spaces

✔ package saturnin.sdk distributed as saturnin-sdk on PyPI

Firebird Conference 2019, Berlin

Part II.
SDK Structure

Firebird Conference 2019, Berlin 9 / 53

SDK content & structure, part I.

➔ namespace packages firebird and saturnin
• package firebird.butler contains protobuf classses used by various

Firebird Butler protocols (eg. firebird.butler.fbsp_pb2)
• package saturnin.sdk is the SDK
• services in saturnin.services package and microservices in

saturnin.micro package

➔ distribution package saturnin-sdk should contain only
essentials
• examples in separate distribution package saturnin-sdk-examples
• service execution and test environment is for now part of SDK, but

will be separated into its own distribution package

Firebird Conference 2019, Berlin 10 / 53

SDK content & structure, part II.
➔ saturnin.sdk – only platform OID, UID and VERSION, and vendor OID and UID
➔ saturnin.sdk.types – Type definitions (exceptions, enums, flags, dataclasses etc.)
➔ saturnin.sdk.collections – Object Registry and ObjectList
➔ saturnin.sdk.config – Classes for configuration definitions
➔ saturnin.sdk.base – ZeroMQ messaging
➔ saturnin.sdk.service – Firebird Butler Services
➔ saturnin.sdk.client – Firebird Butler Service Clients
➔ saturnin.sdk.classic – Classic Service (sync I/O in separate thread or process)
➔ saturnin.sdk.protocol.fbsp – implementation of Firebird Butler Service Protocol
➔ saturnin.sdk.protocol.fbdp – implementation of Firebird Butler Data Pipe Protocol

➔ saturnin.sdk.tools.* – SDK tools (svc_run & svc_test)
➔ saturnin.sdk.test.* – SDK service test environment (currently only for fbsp)
➔ saturnin.services.* – Saturnin services
➔ saturnin.micro.* – Saturnin microservices

Firebird Conference 2019, Berlin

Part III.
ZeroMQ and Saturnin messaging

Firebird Conference 2019, Berlin 12 / 53

ZeroMQ

The following slides show only a preview of
key elements of the ZeroMQ

For complete information visit
https://zeromq.org/
and read excellent

http://zguide.zeromq.org
PyZMQ at https://pyzmq.rtfd.io

http://zguide.zeromq.org/
https://pyzmq.rtfd.io/

Firebird Conference 2019, Berlin 13 / 53

ZeroMQ Essentials, part I.
The Context

➔ ZeroMQ applications always start by creating a
context, and then using that for creating sockets

➔ it’s the container for all sockets in a single process
➔ if at runtime a process has two contexts, these are

like separate ZeroMQ instances
➔ context acts as the transport for inproc sockets

which are the fastest way to connect threads in one process

➔ PyZMQ provides Context class
• Context() returns new instance

• Context.instance() returns global (for process) instance

Firebird Conference 2019, Berlin 14 / 53

ZeroMQ Essentials, part II.
Sockets

➔ the interface is based on the Berkeley sockets API

➔ but socket is NOT single connection to single peer

➔ it’s a doorway to fast little background comm. engine that
manages a whole set of connections, that are private and invisible

➔ all I/O is done in background threads (in Context)

➔ ZMQ is not a neutral carrier: it imposes a framing on the transport
protocols it uses

➔ underneath socket API is a messaging pattern, and the pattern
used determines the type of socket

➔ patterns are (mostly) implemented as pairs of matching types

➔ they have 1-to-N routing behavior built-in, according to the type

Firebird Conference 2019, Berlin 15 / 53

ZeroMQ Essentials, part III.
Messages

➔ sockets carry messages
like UDP, rather than a stream of bytes as TCP

➔ they are transmitted in a background thread
they arrive in local input queues and are sent from local output queues

➔ theys consists from parts called Frames, which are length-
specified block of binary data (>=0b)

• normal message has one frame

• multipart messages let you send or receive a list of frames as a
single on-the-wire message

➔ you may send zero-length messages
e.g., for sending a signal from one thread to another

➔ it is guaranteed that you will receive all parts, or none of them

➔ whole message (all frames) must fit in memory

Firebird Conference 2019, Berlin 16 / 53

ZeroMQ Essentials, part IV.
Socket types

Socket types (in brief):
➔ REQ(est) + REP(ly)

➔ PUSH + PULL
➔ PUB + SUB and XPUB + XSUB
➔ DEALER
➔ ROUTER
➔ PAIR
➔ STREAM

Firebird Conference 2019, Berlin 17 / 53

ZeroMQ Essentials, part V.
DEALER socket

➔ Bidirectional
➔ Unrestricted send/receive pattern
➔ Outgoing routing strategy: Round-robin
➔ Incoming routing strategy: Fair-queued
➔ Action in mute state: Block
➔ Compatible peer sockets:

• DEALER

• ROUTER

• REP

Firebird Conference 2019, Berlin 18 / 53

ZeroMQ Essentials, part VI.
ROUTER socket

➔ Bidirectional
➔ Unrestricted send/receive pattern
➔ Outgoing routing strategy: 1 frame is routing ID
➔ Incoming routing strategy: Fair-queued
➔ Action in mute state: Drop
➔ Compatible peer sockets:

• DEALER

• ROUTER

• REQ

Firebird Conference 2019, Berlin 19 / 53

Messaging in SDK, part I.
Factsheet

➔ module saturnin.sdk.base
➔ a base layer above PyZMQ to simplify the creation

of ZeroMQ applications in general
➔ base abstraction for messages, ZMQ sockets as

communication channels, communication
protocols, message handlers and sessions

➔ uses module saturnin.sdk.types

Firebird Conference 2019, Berlin 20 / 53

Messaging in SDK, part II.
Architecture

Firebird Conference 2019, Berlin 21 / 53

Messaging in SDK, part III.
Specific properties

➔ Multipart messages
➔ Non-blocking send() and receive() with 100ms

default timeout
➔ Control of output message queue through deferred

send() and session suspension

Firebird Conference 2019, Berlin 22 / 53

Messaging in SDK, part IV.
Important types

➔ Enums:
• Origin – Origin of received message in protocol context
• SocketMode – ZMQ socket mode (bind, connect)
• AddressDomain – ZMQ address domain (local, node, network)
• TransportProtocol – ZMQ transport protocol (inproc, ipc, tcp etc.)
• SocketType – ZMQ socket type (pub, sub, push, pull, dealer, router etc.)
• SocketUse – Socket use (producer, consumer, exchange)

➔ Flags:
• Direction – ZMQ socket direction of transmission (in, out, both)

➔ Other:
• ZMQAddress – ZMQ endpoint address. Descendant from builtin str type with

additional R/O properties protocol, address and domain

Firebird Conference 2019, Berlin 23 / 53

Messaging in SDK, part V.
Message

➔ base class that simply holds ZMQ multipart message in its data
attribute

➔ child classes can override from_zmsg() and as_zmsg() methods to
pack/unpack some or all parts of ZMQ message into their own
attributes

➔ methods clear() and copy(), functions has_data() and
has_zmq_frames()

➔ Abstract methods:

• class method validate_zmsg() – verifies that sequence of ZMQ data
frames is a valid message

➔ Attributes:

• data – sequence of data frames

Firebird Conference 2019, Berlin 24 / 53

Messaging in SDK, part VI.
Protocol

➔ main purpose of protocol classes is to validate ZMQ
messages and create protocol messages

➔ base class defines common interface for parsing
and validation: validate(), parse(), is_valid() and
has_greeting()

➔ descendant classes typically add methods for
creation of specific protocol messages

➔ class attributes: OID, UID (must be set in child class)
and REVISION (default 1)

➔ Uses a factory pattern to create Messages

Firebird Conference 2019, Berlin 25 / 53

Messaging in SDK, part VII.
Channel

➔ base class for ZeroMQ communication channel (socket)
➔ Attributes:

• socket_type – ZMQ socket type
• direction – Direction of transmission
• socket – ZMQ socket for transmission of messages
• flags – ZMQ flags used for send() and receive()
• sock_opts – Dictionary with socket options that should be set after socket creation
• routed – True if channel uses internal routing
• endpoints – List of binded/connected endpoints (addresses)
• snd_timeout – Timeout for send operations
• rcv_timeout – Timeout for receive operations
• handler – Message handler used to process messages received from peer(s)
• uid – Unique channel ID used by channel manager
• mngr_poll – True if channel should register its socket into manager Poller

➔ R/O attributes:
• mode – BIND/CONNECT mode for socket
• identity – Identity value for ZMQ socket
• manager – The channel manager to which this channel belongs

➔ Methods: bind(), unbind(), connect(), disconnect(), close(), send(), receive(),
set_handler(), is_active() and configure()

Firebird Conference 2019, Berlin 26 / 53

Messaging in SDK, part VIII.
Channel Manager

➔ A superstructure over the ZMQ context ensuring control over
communication channels, and a pillar of the I/O loop

➔ Attributes:
• ctx – ZMQ Context instance
• channels – Channels associated with manager
• deferred – List with deferred work, contains tuples with (Callable,List)

➔ Methods:
• add() & remove() channel
• register(), unregister() and is_registered()
• defer(), is_deferred() and process_deferred()
• wait() – Wait for I/O events on registered channnels
• shutdown() – Terminate all managed channels

Firebird Conference 2019, Berlin 27 / 53

Messaging in SDK, part IX.
Message Handler

➔ the semantic communication layer
everything essential (in application) is done through the descendants of this class

➔ Attributes:
• chn – Handled I/O channel
• role – Peer role
• protocol – Protocol used
• sessions – Dictionary of active sessions, key=routing_id
• resume_timeout – Time limit in seconds for how long session could be

suspended before it's cancelled
• on_cancel_session – Callback executed before session is cancelled

➔ Abstract methods:
• dispatch - Process message received from peer

➔ Methods:
• send() & receive()
• create|get|discard|suspend|resume|cancel_session
• handle_*() for handling of invalid messages and dispatch errors

Firebird Conference 2019, Berlin 28 / 53

Messaging in SDK, part X.
Session

➔ contextual information for communication with a particular peer

➔ base session holds only essentials, child classes may add their
own information and functionality

➔ Attributes:
• routing_id – Channel routing ID
• endpoint – Connected endpoint address, if any
• discarded – True if sessions was discarded
• messages – List of deferred messages
• pending_since – Value is either None or monotonic() time of first

unsuccessful send operation (i.e. notes time of suspension and start of
resume_timeout period)

➔ Methods:
• send_later(), get_next_message() and message_sent()
• is_suspended()

Firebird Conference 2019, Berlin

Part IV.
Firebird Butler Service Protocol (FBSP)

Firebird Conference 2019, Berlin 30 / 53

FBSP specification

The following slides show only a preview of
key elements of the FBSP specification

The complete specification is at
https://firebird-butler.rtfd.io/en/latest/rfc/4/FBSP.html

Firebird Conference 2019, Berlin 31 / 53

FBSP specification, part I.
Overall Behavior

Exchange of messages over the Transport Channel is implemented as a
Connection between the Service and the Client where the connection has the
following stages:

1. The Client MUST initiate the connection by sending the HELLO message.

2. The Service MUST reply to the HELLO message by sending a WELCOME message
to confirm the connection. If the Service cannot accept the connection, it MUST
send the ERROR message instead.

3. After confirming a successful Connection, the Client can start sending messages
to which the Service responds by sending one or more messages of its own.

4. The Client or Service can terminate the Connection at any time by sending a
CLOSE message, or by closing the Transport Channel. However, the peer initiating
the connection termination SHOULD send the CLOSE message before it closes
the Transport Channel to the other peer.

Firebird Conference 2019, Berlin 32 / 53

FBSP specification, part II.
Client and Service Identity

Both the Client and the Service must be uniquely identified
➔ The content of the Identity MAY be arbitrary

➔ There MUST be a canonical string Identity representation

➔ Both the Client Identity and the Service Identity MUST be unique in the
same namespace

➔ Both the Client and the Service MUST use the Identity for all identification
purposes

➔ If Service acts as a Client to another Service, then MUST use its own
Service Identity as the Client Identity to the another Service

➔ It is RECOMMENDED that both the Client and the Service use the Identity
for routing purposes

➔ It is RECOMMENDED to use UUID as Identity

Firebird Conference 2019, Berlin 33 / 53

FBSP specification, part III.
Message structure

➔ Mesage consists from a control frame, and zero or more data frames

Control frame:
● Signature – “FBSP”
● CB (control byte) – encodes a message type, and protocol version. Both are

decimal numbers. msg-type on upper (leftmost) 5 bits, version on lower
(rightmost) 3 bits

● Flags – various control flags as individual bits
● TD (type data) – Message-type specific data

Firebird Conference 2019, Berlin 34 / 53

FBSP specification, part IV.
Message types

Message type Who can send Description

HELLO Client Initial message from Client

WELCOME Service Initial response from Service

NOOP Client, Service No operation, used for keep-alive & ping

REQUEST Client Client request

REPLY Service Service response to client request

DATA Client, Service Separate data sent by either client or service

CANCEL Client Cancel request

STATE Service Operation state information

CLOSE Client, Service Sent by peer that is going to close the conn.

ERROR Service Error reported by service

Firebird Conference 2019, Berlin 35 / 53

FBSP specification, part V.
Message Token

Message Token is a tool to pair Client requests with multiple
messages sent by Service in response

Processing of the token is governed by the following rules:

1. The content of the Token MAY be arbitrary
2. The content of the Token SHALL be specified by Client only
3. The Token MUST be returned without change in any message sent by the Service,

which is a logical response to the original message sent by the Client containing
that token

4. Messages sent by a Service that can not be uniquely identified as a logical
response to a previous message sent by a Client (such as unexpected general
ERROR, CLOSE, or NOOP sent to check the client’s availability) MUST contain the
Token passed by the Client in the HELLO message

Firebird Conference 2019, Berlin 36 / 53

FBSP specification, part VI.
Message Flags

Flags are encoded as individual bits in flags field of the control-frame

ACK-REQUEST (bit: 0, mask: 1)
➔ intended for verification and synchronization purposes
➔ any received control-frame of message-type NOOP, REQUEST, REPLY, DATA,

STATE or CANCEL that have ACK-REQUEST flag set SHALL be sent back to the
sender as confirmation of accepted message, unless the receiver is a Service
and an error condition occurs. In such a case the ERROR message SHALL be
sent by Service instead confirmation message

ACK-REPLY (bit: 1, mask: 2)
➔ indicates that message is a confirmation of the message previously sent by

receiver

MORE (bit: 2, mask: 4)
➔ The MORE flag SHALL be set for all messages that are a part of logical message

stream, and are not the terminal message of this stream

Firebird Conference 2019, Berlin 37 / 53

FBSP specification, part VII.
Service API

The Service API consists from Interfaces (API contracts) that
consists from individual operations (functions)

1. An Interface SHALL have a globally unique identification (GUID). It’s
RECOMMENDED to use uuid version 5 - SHA1, namespace OID

2. An Interface MUST provide at least one Operation (function), and MAY provide up
to 255 individual Operations

3. An Operation MUST have numeric identification unique within the Interface, and
with value in range 1..255. This identification is called Interface operation code

4. The Service MUST assign an unique Interface identification number in range
1..255 to each Interface it provides, and announce the Interface identification
along with assigned number in the data-frame of the WELCOME message

5. The Service MUST provide at least one Interface, and MAY provide up to 255
individual Interfaces

6. The set of Interfaces that Service provides MUST be stable, which means that all
Service instances with the same Agent Identification MUST provide the same set
of Interfaces to all Clients

Firebird Conference 2019, Berlin 38 / 53

FBSP specification, part VIII.
Request Codes

The Request Code uniquely identifies the Service functionality
(an API call)

1. The first (more significant) byte of type-data field SHALL contain the Interface
identification number assigned by Service to particular Interface it supports (see
Data frames - WELCOME)

2. The second (less significant) byte of type-data field SHALL contain the Interface
operation code

Firebird Conference 2019, Berlin 39 / 53

FBSP implementation, part I.
Factsheet

➔ module saturnin.sdk.protocol.fbsp
➔ protobuf classes in firebird.butler.fbsp_pb2

also available as saturnin.sdk.protocol.fbsp.fbsp_proto

➔ redefines Message, Protocol and Session classes
➔ provides FBSP Message Handlers for Services and

Clients
➔ provides helper functions for conversion between

ERROR message and exception
➔ provides global Protocol instance

Firebird Conference 2019, Berlin 40 / 53

FBSP implementation, part II.
Types

● Enums: MsgType and ErrorCode
● Flags: MsgFlag
● Classes Protocol and Session
● Handler classes: BaseFBSPHandler, ServiceMessagelHandler and

ClientMessageHandler
● Message classes:

Firebird Conference 2019, Berlin 41 / 53

FBSP implementation, part III.
Protocol class

➔ Class attributes:
• OID, UID, REVISION
• VALID_ACK
• ORIGIN_MESSAGES
• MESSAGE_MAP

➔ Class methods: instance()
➔ Methods:

• create_message_for() - new msg instance for particular FBSP message type
• create_ack_reply() - new msg that is an ACK-REPLY response message
• create_welcome_reply() - new WelcomeMessage that is a reply to HELLO
• create_error_for() - new ErrorMessage that relates to specific message
• create_reply_for() - new ReplyMessage for specific RequestMessage
• create_state_for() - new StateMessage that relates to RequestMessage
• create_data_for() - new DataMessage for reply to specific RequestMessage
• create_request_for() - new RequestMessage for specific API call

Firebird Conference 2019, Berlin 42 / 53

FBSP implementation, part IV.
FBSP Message Handlers

➔ Implements dispatch() that uses handlers dictionary to route
received messages to appropriate handlers
• Child classes may update this table with their own handlers in __init__()
• Dictionary key could be either a <message_type> or

tuple(<message_type>,<type_data>)
➔ Exceptions in handlers are captured by dispatch(), and processed

via handle_exception() method
➔ ServiceMessagelHandler and ClientMessageHandler classes

implement required and typical message processing patterns for
Services a Clients using various handle_*() methods

➔ There is only several abstract methods left:
• ServiceHandler: handle_cancel()
• ClientHandler: handle_reply(), handle_data(), handle_state(), handle_error()

Firebird Conference 2019, Berlin

Part V.
Butler services in Saturnin

Firebird Conference 2019, Berlin 44 / 53

Services, part I.
Architecture, part I.

➔ service implementation is separated into two class hierarchies defined in
saturnin.sdk.service module
• (Base)Service defines structure of the service composed from

abstract structural parts
• (Base)ServiceImpl provides implementation of structural parts

➔ Service implementation involves creating a child of a class in the
BaseServiceImpl hierarchy, and a child of the FBSPServiceHandler class

Service source code layout

 Directory saturnin.service.<service-name>
➔ api.py – descriptors and configuration
➔ service.py – service impl + msg handler
➔ client.py – svc client (msg handler)
➔ test.py – svc tester class

Firebird Conference 2019, Berlin 45 / 53

Services, part II.
Architecture, part II.

BaseServiceImpl
➔ Attributes: mngr, stop_event
➔ Cfg. options: shutdown_linger
➔ Methods: get(), initialize(), configure(),

validate(), finalize(), idle()

MicroserviceImpl
➔ Attributes: agent, peer, instance_id

ServiceImpl
➔ Attributes: endpoints, welcome_df, api

SimpleServiceImpl
➔ Attributes: svc_chn
➔ Cfg. options: sock_opts

Firebird Conference 2019, Berlin 46 / 53

Services, part III.
Architecture, part III.

➔ module saturnin.sdk.classic provides Service (container) that
runs its own message loop and do not use any async
programming techniques or Python libraries

➔ Running a service effectively blocks the main thread, so if an
application needs to perform other tasks or if you need to
run multiple services in parallel in one application, each
service must run in a separate thread or subprocess

➔ Module provides ServiceExecutor class to run such classic
(micro)services in their own separate thread or subprocess

✔ could be used in application that is built from (micro)services
✔ or in services to distribute work across pool of worker microservices

Firebird Conference 2019, Berlin 47 / 53

Services, part IV.
Services, Agents, Peers and Interfaces, part I.

➔ Agent = particular service, client or application
for example backup-service, my-server-console etc.

➔ Peer = a running instance of particular Agent
➔ Both the Client and the Service exchange their Agent and

Peer information during the HELLO/WELCOME handshake
➔ Service also sends information about its API (interfaces)
➔ The format, content and structure is defined by 3/FBSD and

4/FBSP specifications
• Peer info:

uid (bytes), pid (uint32), host (string) and supplement (repeated Any)
• Agent info:

uid (bytes), name (string), version (string), vendor (VendorId), platform
(PlatforId), classification (string) and supplement (repeated Any)

Firebird Conference 2019, Berlin 48 / 53

Services, part V.
Services, Agents, Peers and Interfaces, part II.
The Saturnin SDK builds on this information its own Service Description
structure – dataclasses defined in saturnin.sdk.types

InterfaceDescriptor

uid Interface ID (UUID)

name Interface name

revision Interface revision number

number Interface Identification Number
assigned by Service

requests Enum for interface operation
codes

AgentDescriptor

uid Agent ID (UUID)

name Agent name

version Agent version string

vendor_uid Vendor ID (UUID)

classification Agent classification string

platform_uid Butler platform ID (UUID)

platform_version Butler platform version string

supplement Optional list of supplemental
information

PeerDescriptor

uid Peer ID (UUID)

pid Peer process ID

host Host name

supplement Optional list of supplemental
information

Firebird Conference 2019, Berlin 49 / 53

Services, part VI.
Services, Agents, Peers and Interfaces, part III.

ServiceDescriptor

agent Service agent descriptor

api Service FBSP API description or None (for microservice)

dependencies List of (DependencyType, UUID) tuples

execution_mode Preferred execution mode

service_type Type of service

facilities Service facilities

description Text describing the service

implementation Locator string for service implementation class

container Locator string for service container class

config Locator string for service configuration callable

client Locator string for service client class

tests Locator string for service test class

Firebird Conference 2019, Berlin

Part VI.
Service configuration

Firebird Conference 2019, Berlin 51 / 53

Service configuration
➔ Set of classes in saturnin.sdk.config
➔ Hierarchy of of configuration Option classes that supports:

• typed values
• validation
• serialization to/from protobuf Struct message
• loading from standard Python configparser
• printing
• creation of default/sample configuration files
• enough metadata for interactive value specification

➔ Supported option data types: str, int, float, bool, strList,
ZMQAddress, ZMQAddressList, Enum, UUID, MIME type, Config
(collection of options) and ConfigList

➔ Config class is a collection of Options
➔ Config descendants with predefined options for Microservices and

Services

Firebird Conference 2019, Berlin 52 / 53

Questions?

Firebird Conference 2019, Berlin 53 / 53

Thanks for your attention

Contacts:
✔ Email: pcisar@ibphoenix.cz

✔ www.ibphoenix.com

Saturnin SDK:

✔ git: https://github.com/FirebirdSQL/saturnin-sdk

✔ Documentation: https://saturnin-sdk.rtfd.io/

✔ Mailing list: https://groups.google.com/d/forum/saturnin-sdk

mailto:pcisar@ibphoenix.cz

	Snímek 1
	Firebird Conference 2019 Berlin, 17-19 October
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31
	Snímek 32
	Snímek 33
	Snímek 34
	Snímek 35
	Snímek 36
	Snímek 37
	Snímek 38
	Snímek 39
	Snímek 40
	Snímek 41
	Snímek 42
	Snímek 43
	Snímek 44
	Snímek 45
	Snímek 46
	Snímek 47
	Snímek 48
	Snímek 49
	Snímek 50
	Snímek 51
	Snímek 52
	Snímek 53

