
Threading in Firebird and the Future

Ann W. Harrison

James A. Starkey

A Word of Thanks to our Sponsors

Why Threads?

Improve multi-user performance

Utilize multi-processor systems

Databases are too easy to multi-thread

What are Atomic Instructions?

Most machine instructions can be interrupted, allowing

the world to change.

Atomic instructions (e.g. CAS) run to completion.

Essential for multi-thread performance.

Wasn’t Firebird Always Threaded?

Earliest versions of shared server ran query for one

user until it stalled before responding to next user.

Not friendly.

Multi-threaded server runs to the next wait or for a fixed

period plus the time to make the database state

consistent.

Threads never run concurrently.

Firebird Classic

Designed for VAX Clusters

 Multiple independent computers

 Shared intelligent disk controller

 Cluster-wide lock manager

Firebird Classic Multi-Processor

Single Machine, Multi-Processor

O/S schedules Firebird clients on processors

Clients share

 Disk

 Lock manager

Clients do not share

 Page Cache

 Metadata

Non-shared cache

Firebird classic, super classic

Client B wants

page 123

Client A changed

page 123

Yes, that is really a disk write

Shared cache - Superserver

Client A changed

page 123

Client B wants

page 123

Client A releases

lock on page 123

Client B locks

page 123

1

2

3

Threading, 101

Thread

PC: Instruction stream of control

Dedicated Stack (1 mb+)

Thread specific data

All threads share process memory

Expensive to create, cheap to use

(If you don’t thrash)

Threading 101

Interlocked Instruction: Atomic compare and swap

Compares given value to value at given address

If equal, store new value at given address

If not, fails and does nothing

Interlocked instructions are the mortar of multi-threading

Threading 101

Non-interlocked data structures

Data structures managed only by interlocked

instructions

Completely non-blocking

The fastest – and hardest – form of multi-

programming

Threading 101

RW-lock, aka SyncObject

Can be locked for read/shared

Can be locked for write/exclusive

Blocks until access can be granted

Monitor semantics: Thread doesn’t lock against itself

Implemented with interlocked CAS

Threading 101

Coarse grain multi-threading

Single mutex controls an entire subsystem

Individual data structures are not interlocked

Fine grain multi-threading

Individual RW-lock per data structure

Allows many threads to share a subsystem

Threading 101

Dedicated Thread

Thread assigned specific task

Garbage collector, network listener, etc.

Client thread

Thread executing user request

Worker Thread

Thread idle or executing user request

Thread pool

Manages worker threads

Threading Models

Thread per connection

Worker thread assigned at connection time

Worker thread == Client thread

Idle client threads consume resources

Many connections => high contention

Threading Models

Limited worker threads

Limit active worker threads to approx. number of

processors

User requests queued until work thread becomes

available

If worker thread stalls (page read), thread pool can

release next user request

Utilizes processors without unnecessary contention

Threading Models

Limited Worker Threads:

Dedicated listener thread waits for readable socket

Connection object (on listener thread) does socket

read

When packet is complete, connection object queue

to thread pool

When worker thread becomes available, connection

object is executed

Threading Model

Thread per connection is first step

Limited worker threads is essential for scalability

Interbase Threads: The Beginning

The concept of threads was known at the birth of

Interbase, but no implementations existed on small

machines.

SMP didn’t exist in the mini or workstation world

The initial version of Interbase used signals for

communication

User requests executed with “looper”; when a request

stalled, another request could run

Interbase Theads: The V3 Disaster

Apollo was the first workstation vendor with threads

I implemented a VMS threading package

Sun’s first attempt at threads didn’t even compile

Interbase V3 was going to be mixed signals + threads

Then disaster: Apollo Domain had unfixable

architectural flaw mixing threads and signals

A long slip ensued

Interbase Threads: V3 Reborn

The engine was either threaded or signal based

Dedicated threads for lock manager, event manager,

etc.

Server was thread per client

Engine continued with coarse grain multi-threading

Firebird Threading: Vulcan

Vulcan, now deceased, introduced limited fine grain

multi-threading

Threads synchronized with SyncObject: User mode

read/write locks with monitor semantics

SMP had arrived, followed shortly by processor based

threads

Some Performance Lessons

The goal is to saturate CPU, network, memory, and disk

bandwidth simultaneously.

There is no reason to run more worker threads than

cores (and many reasons not to), but

A stalled thread is an efficient way to maintain request

state (death to “looper”!)

A Winning Architecture

A single dedicated thread waiting for readable sockets

Request starts are posted to thread manager for

available worker thread

When active worker threads drops below threshold, a

pending request is assigned a worker thread

A stalling thread checks in with thread manager to drop

the number of active worker threads

An unstalled request bumps the number of a.w.t.

